Free Document Search and Download
http://www.downhi.com/
　　
Using Python in parallel
：
http://www.nuokui.com/pdf/lvBGfVQv959I.html


Page 1Using Python in parallel
Erik Spence
SciNet HPC Consortium
22 October 2014
Erik Spence (SciNet HPC Consortium)Parallel Python
22 October 20141 / 43
Page 2Why are we here?
What is the modivation for this class? The basic problem is one of dataanalysis:Datasets can be huge.Data analysis is often done using languages that are not generallyconsidered â€�high performanceâ€�, such as Python and R.Parallelization of the data analysis process can greatly speed thingsup.The means by which such parallelization is accomplished is often notwell known, or the pitfalls involved are not well-understood.Weâ€™re here to try to help you understand how to parallelize code written inPython or R, to speed up data analysis in particular.
Erik Spence (SciNet HPC Consortium)Parallel Python
22 October 20142 / 43
Page 3A quick introduction to Python
Weâ€™ll quickly review Python for those that have not used it. Python hasseveral standard data types:Numbers (integers, floats)StringsListsSetsTuplesDictionariesDuring this introduction, we are going to cover several of these data typesand introduce iterators in Python.
ejspence@mycomp ~> source /scinet/course/ScalableDataAnalysis/setup
Erik Spence (SciNet HPC Consortium)Parallel Python
22 October 20143 / 43
Page 4Numbers
Python supports four different numerical types:int (signed integers)long (long integers )float (floating point real values)complex (complex numbers)To assign numbers:
In[1]: i = 5In[2]: L = 5LIn[3]: f = 3.14In[4]: c = -1.2   2jIn[5]: i * f15.700000000000001
Erik Spence (SciNet HPC Consortium)Parallel Python
22 October 20144 / 43
Page 5Lists
A list is a collection of items where each item in the list has an assignedindex value. Lists are enclosed in square brackets [ ]; each item isseparated by a comma.Creation:
In[6]: L = [â€™yellowâ€™, â€™redâ€™, â€™blueâ€™,   http://www.nuokui.com/pdf/lvBGfVQv959I.html  â€™greenâ€™, â€™blackâ€™]In[7]: print L[â€™yellowâ€™, â€™redâ€™, â€™blueâ€™, â€™greenâ€™, â€™blackâ€™]
Length - number of items in list:
In[8]: print len(L)5
Erik Spence (SciNet HPC Consortium)Parallel Python
22 October 20145 / 43
Page 6Lists, continued
Accessing specific elements:
In[9]: print L[0]yellowIn[10]: print L[1:4]# print elements 1 to 4 not including 4[â€™redâ€™, â€™blueâ€™, â€™greenâ€™]In[11]: print L[2:]# print elements 2 to last[â€™blueâ€™, â€™greenâ€™, â€™blackâ€™]In[12]: print L[:2]# print the first 2 elements[â€™yellowâ€™, â€™redâ€™]In[13]: print L[-1]# print the last elementblackIn[14]: print L[1:-1]# print all except the first and last elements[â€™redâ€™, â€™blueâ€™, â€™greenâ€™]
Note that these indexing rules also apply to arrays, frames, and otherPython datatypes.
Erik Spence (SciNet HPC Consortium)Parallel Python
22 October 20146 / 43
Page 7Lists, continued some more
Adding to, and looping over, the list:
In[15]: L.append(â€™pinkâ€™)In[16]: print L[â€™yellowâ€™, â€™redâ€™, â€™blueâ€™, â€™greenâ€™, â€™blackâ€™, â€™pinkâ€™]In[17]: for item in L:...:print item...:yellowredbluegreenblackpinkIn[18]: for i in range(3):...:print i...:012
Erik Spence (SciNet HPC Consortium)Parallel Python
22 October 20147 / 43
Page 8Tuples
Tuples are useful for representing what other languages often call recordssome related information that belongs together.A tuple is a sequence of immutable Python objects.Tuples are sequences, just like lists.The only difference is that tuples canâ€™t be changed: tuples areimmutable.Tuples use parentheses and lists use square brackets.Creating and accessing:
In[19]: tup1 = (12, 34.56)In[20]: tup2 = ("tup2", 36, 21)In[21]: print tup1[0]12In[22]: print tup2[1:3](36, 21)
Erik Spence (SciNet HPC Consortium)Parallel Python
22 October 20148 / 43
Page 9Tuples
Updating Tuples: Tuples are immutable whic  http://www.nuokui.com/pdf/lvBGfVQv959I.html  h means you cannot update,delete, or change the values of tuple elements in place.
In[23]: tup2[1] = 52Traceback (most recent call last):File â€˜â€˜<stdin>â€™â€™, line 1, in <module>TypeError: â€™tupleâ€™ object does not support item assignmentIn[24]: tup3 = tup1   tup2In[25]: print tup3(12, 34.560000000000002, â€™tup2â€™, 36, 21)
To change a value within a tuple you must make a copy of the parts of thetuple you want, delete the whole tuple and then recreate it.
Erik Spence (SciNet HPC Consortium)Parallel Python
22 October 20149 / 43
Page 10Dictionaries
Dictionaries are a python data type which associates keys to values.Create a dictionary:
In[19]: a = dict(one = 1, two = 2, three = 3)In[20]: b = â€™oneâ€™: 1, â€™twoâ€™: 2, â€™threeâ€™: 3In[21]: c = dict([(â€™twoâ€™, 2), (â€™oneâ€™, 1), (â€™threeâ€™, 3)])In[22]: d = dict(â€™threeâ€™: 3, â€™oneâ€™: 1, â€™twoâ€™: 2)In[23]: e = In[24]: e[â€™oneâ€™] = 1; e[â€™twoâ€™] = 2; e[â€™threeâ€™] = 3
Dictionary values have no restrictions. They can be any arbitrary Pythonobject, either standard objects or user-defined objects. However, same isnot true for the keys; keys must be strings, numbers or tuples.
Erik Spence (SciNet HPC Consortium)Parallel Python
22 October 201410 / 43
Page 11Dictionaries, continued
Dictionaries have some handy functions built in.
In[19]: a.keys()[â€™threeâ€™, â€™twoâ€™, â€™oneâ€™]In[20]: b.has key(â€™oneâ€™)TrueIn[21]: c.has key(â€™fourâ€™)FalseIn[22]: d.values()[3, 2, 1]In[23]: e[â€™oneâ€™]1In[24]: e.get(â€™twoâ€™)2
Dictionaries are most useful when you need a dynamic datatype that cangrow as needed.
Erik Spence (SciNet HPC Consortium)Parallel Python
22 October 201411 / 43
Page 12An introduction to parallel Python
In this session we will go over some of the ways in which you canparallelize your Python code.spawned subprocessesprocess forksspawned threads (Threading module)spawned processes (mu  http://www.nuokui.com/pdf/lvBGfVQv959I.html  ltiprocessing module)poolsMPI with python
Erik Spence (SciNet HPC Consortium)Parallel Python
22 October 201412 / 43
Page 13The subprocess module, serial calls
The subprocess module can be usedcall external programs. This isusually used for system calls, butcan also be used for personalprograms.This program will call theexecutable â€™summer exe.pyâ€™ 10times, sequentially. This is not aparallel implementation.
#!/usr/bin/python# summer exe.py executable
from sys import argv
start = int(argv[1])stop = int(argv[2]);tot = 0
for i in xrange(start, stop): tot  = i
# summer.subprocess.serial.py
import timefrom subprocess import call
begin = time.time()processes = []
for i in range(10):
p = call(["./summer exe.py", "0",
"5000000"])
processes.append(p)
print"Time:", time.time() - begin
Erik Spence (SciNet HPC Consortium)Parallel Python
22 October 201413 / 43
Page 14Now with separate subprocesses
subprocess.Popen will spawn aseparate process. Which of these isfaster now?
# summer.subprocess.parallel.py
import time from subprocess import
Popen
begin = time.time()processes = []
for i in range(10):
p = Popen(["./summer exe.py", "0",
"5000000"])
processes.append(p)
# Wait for all processes to finish.
for p in processes: p.wait()print"Time:", time.time() - begin
#!/usr/bin/python# summer exe.py executable
from sys import argv
start = int(argv[1])stop = int(argv[2]);tot = 0
for i in xrange(start, stop): tot  = i
# summer.subprocess.serial.py
import timefrom subprocess import call
begin = time.time()processes = []
for i in range(10):
p = call(["./summer exe.py", "0",
"5000000"])
processes.append(p)
print"Time:", time.time() - begin
Erik Spence (SciNet HPC Consortium)Parallel Python
  http://www.nuokui.com/pdf/lvBGfVQv959I.html  22 October 201414 / 43
Page 15The subprocess module
Some notes about the subprocess module:As you noticed, executable programs of any kind can be launchedfrom with Python, using the â€™callâ€™ command.The Popen command spawns a separate process in parallel to theparent process.Popen has a few other features which are notworthy:
â–º data can be sent to stdin, for the process to accept.â–º stdout and stderr from the process can be captured and passed to
another python object.
The functionality of Popen is meant to succeed the commandsos.system and os.popen.Note that, contra the examples, Python code should never be run in thisway, since it is generally much slower than running the code within theexisting program. Save such commands for spawning system calls, orprograms written in other languages.
Erik Spence (SciNet HPC Consortium)Parallel Python
22 October 201415 / 43
Page 16Process forking
Another simple way to run code inparallel is to â€™forkâ€™ the process.The system call fork() creates acopy of the process that called it,and runs it as a child process.The child gets ALL the data of theparent process.The child gets its own processnumber (PID), and as such runsindependently of the parent.We use the return value of fork()to determine which process we are;0 means weâ€™re the child.Probably doesnâ€™t work inWindows.
# firstfork.py
import os
# Our child process.
def child():print "Hello from", os.getpid()
os. exit(0)
# The parent process.
while (True):
newpid = os.fork()
if newpid == 0:
child()
else:print "Hello from parent",
os.getpid(), newpidif raw input() == "q": break
Erik Spence (SciNet HPC Consortium)Parallel Python
22 October 201416 / 43
Page 17forking/executing
What if we prefer to run a completelydifferent code, rather than copying theexisting code t  http://www.nuokui.com/pdf/lvBGfVQv959I.html  o the child?we can run one of the os.execseries of functions.The os.execlp call replaces thecurrently running program withthe new one specified, in thechild process only.If os.execlp is successful atlauching the program, it neverreturns. Hence the
assert statement is only invoked
if something goes wrong.
# child.py
import osprint "Hello from", os.getpid()
os. exit(0)
# secondfork.py
import oswhile (True):
pid = os.fork()
if pid == 0:
os.execlp("python", "python",
"child.py")
assert False,
"Error starting program"
else:print "The child is", pid
if raw input() == "q": break
Erik Spence (SciNet HPC Consortium)Parallel Python
22 October 201417 / 43
Page 18Notes about fork()
Fork was an early implementation used to spawn sub-processes, and is nolonger commonly used. Some things to remember if you try to use thisapproach:use os.waitpid(child pid) if you need to wait for the child process tofinish. Otherwise the parent will exit and the child will live on.fork() is a Unix command. It doesnâ€™t work on Windows, except underCygwin.This must be used very carefully, ALL the data is copied to the childprocess, including file handles, open sockets, database connections...Be sure to exit using os. exit(0) rather than os.exit(0), or else thechild process will try to clean up resources that the parent process isstill using.Because of the above, fork() can lead to code that is difficult tomaintain long-term.
Erik Spence (SciNet HPC Consortium)Parallel Python
22 October 201418 / 43
Page 19Using fork in data analysis
Some notes about using forks in the context of data analysis:Something you may have noticed the about fork examples thus far isthe lack of return from the functions.Forked processes, being processes and not threads, do not shareanything with the parent process.As such  http://www.nuokui.com/pdf/lvBGfVQv959I.html  , the only way they can return anything to the parent functionis through inter-process communication.This is possible, though a bit tricky. Weâ€™ll look at one way to do thislater in the class.Your best bet, from a data processing point of view, is to just usefork for one-time functions that do not return anything to the parent.
Erik Spence (SciNet HPC Consortium)Parallel Python
22 October 201419 / 43
Page 20Processes versus threads
There is often confusion on the difference between threads and processes.A process provides the resources needed to execute a program. Athread is a path of execution within a process. As such, a processcontains at least one thread, possibly many.A process contains a considerable amount of state information(handles to system objects, PID, address space, ...). As such they aremore resource-intensive to create. Threads are very light weight incomparison.Threads within the same process share the same address space. Thismeans they can share the same memory and can easily communicatewith each other.Different processes do not share the same address space. Differentprocesses can only communicate with each other throughOS-supplied mechanisms.
Erik Spence (SciNet HPC Consortium)Parallel Python
22 October 201420 / 43
Page 21Notes about threads
Are there advantages to using threads, versus processes?As noted about, threads are light-weight compared to processes. As aresult, they start up more quickly.Threads can be simpler to program, especially when the threads needto communicate with each other.Threads share memory, which can simplify (as well as obfuscate)programming.Threads are more portable than forked processes, as they are fullysupported by Windows.These points aside, there are downsides to using threads in a data-analysisapplication, as weâ€™ll see in a moment.
Erik Spence (SciNet HPC Consortium)Parallel Pyth  http://www.nuokui.com/pdf/lvBGfVQv959I.html  on
22 October 201421 / 43
Page 22Spawning threads, which is faster?
# summer.py
def my summer(start, stop):
tot = 0
for i in xrange(start,stop):
tot  = i
# summer.serial.py
import timefrom summer import my summer
begin = time.time()threads = []
for i in range(10):
my summer(0, 5000000)
print "Time:", time.time() - begin
# summer.threaded.py
import time, threadingfrom summer import my summer
begin = time.time()threads = []
for i in range(10):
t = threading.Thread(target = my summer,args = (0, 5000000))threads.append(t)t.start()
# Wait for all threads to finish.
for t in threads: t.join()print "Time:", time.time() - begin
Erik Spence (SciNet HPC Consortium)Parallel Python
22 October 201422 / 43
Page 23Not even close
The threading code is no faster than the serial code, even on my computerwith two cores. Why?The Python Interpreter uses the Global Interpreter Lock (GIL).To prevent race conditions, the GIL prevents threads from the samePython program from running simultaneously. As such, only one coreis used at any given time.Consequently the threaded code is no faster than the serial code, andis generally slower due to thread-creation overhead.As a general rule, threads are not used for most Python applications(GUIs being one important exception). This example is fordemonstration purposes only.Instead, we will use one of several other modules, depending on theapplication in question. These modules will launch subprocesses,rather than threads.
Erik Spence (SciNet HPC Consortium)Parallel Python
22 October 201423 / 43
Page 24The multiprocessing module
The multiprocessing module tries to strike a balance between forks andthreads:Unlike fork, multiprocessing works on Windows (better portability).Slightly longer start-up time than threads.Mul  http://www.nuokui.com/pdf/lvBGfVQv959I.html  tiprocessing spawns separate processes, like fork, and as such theyeach have their own memory.Multiprocessing requires pickleability for its processes on Windows,due to the way in which it is implemented. As such, passingnon-pickleable objects, such as sockets, to spawned processes is notpossible.
Erik Spence (SciNet HPC Consortium)Parallel Python
22 October 201424 / 43
Page 25The multiprocessing module, continued
A few notes about themultiprocessing module:The Process functionlaunches a separateprocess.The syntax is very similarto the threading module.This is intentional.The details under the hooddepend strongly upon thesystem involved (Windows,Mac, Linux), thus theportability of code writtenwith this module.
# summer.multiprocessing.py
import time, multiprocessingfrom summer import my summer
begin = time.time()processes = []
for i in range(10):
p = multiprocessing.Process(target = my summer,args = (0, 5000000))processes.append(t)p.start()
# Wait for all processes to finish.
for p in processes: p.join()print "Time:", time.time() - begin
Erik Spence (SciNet HPC Consortium)Parallel Python
22 October 201425 / 43
Page 26Multiprocessing pools
The process of assigning tasks canbe automated using Pools. Thenumber of jobs to be run is givenby the number of entries in theinput which is passed.Note that Pool.map is a blockingfunction.
# summer.py
def my summer2(data):
# Only one argument may be# passed using Pool.
start, stop = datatot = 0
for i in xrange(start,stop):
tot  = i
# summer.multiprocesing.pool.py
import time, multiprocessingfrom summer import my summer2
begin = time.time()numjobs = 10numprocs = multiprocessing.cpu count()
# The arguments are the same for all.
input = [(0, 5000000)] * numjobsp = multiprocessing.Pool(
processes = nu  http://www.nuokui.com/pdf/lvBGfVQv959I.html  mprocs)p.map(my summer2, input)
print "Time:", time.time() - begin
Erik Spence (SciNet HPC Consortium)Parallel Python
22 October 201426 / 43
Page 27The multiprocess module, shared memory
The multiprocess module allows oneto seamlessly share memorybetween processes. This is doneusing the â€™Valueâ€™ and â€™Arrayâ€™objects.Unfortunately, despite some lockingdone on the variables in question,race conditions can still occur, ascan be seen with the code here.Value is a wrapper around a ctypeobject. The first argument is thevariable type, the second is thatvalue.
# multiprocessing.shared.py
import timefrom multiprocessing import Process,
Value
def myfunc(v):for i in range(50):
time.sleep(0.001)v.value  = 1
if
name
== " main ":v = Value(â€™iâ€™, 0);procs = []
for i in range(10):
p = Process(target = myfunc,args = (v,))procs.append(p)p.start()
for proc in procs: proc.join()print v.value
Erik Spence (SciNet HPC Consortium)Parallel Python
22 October 201427 / 43
Page 28Race conditions
What went wrong?Race conditions occur when program instructions are executed in anorder not intended by the programmer. The most common cause iswhen multiple processes are given access to a resource.In the example here, weâ€™ve modified a location in memory that isbeing accessed by multiple processes.Note that it need not only be processes or threads that can modify aresource, anything can modify a resource, hardware or software.Bugs caused by race conditions are extremely hard to find.Disasters can occur (Therac-25).Be very very careful when sharing resources between multiple processes orthreads!
Erik Spence (SciNet HPC Consortium)Parallel Python
22 October 201428 / 43
Page 29Using shared memory, continued
The solution, of course, is to bemore explicit in your locking.If you must use   http://www.nuokui.com/pdf/lvBGfVQv959I.html  shared memory, besure to test everything verythoroughly.
# multiprocessing.shared.fixed.py
import timefrom multiprocessing import Process,
Value, Lock
def myfunc(v, lock):for i in range(50):
time.sleep(0.02)
with lock:
v.value  = 1
# multiprocessing.shared.fixed.py,# continued
if
name
== " main ":v = Value(â€™iâ€™, 0)lock = Lock()procs = []
for i in range(10):
p = Process(target = myfunc,args = (v, lock))procs.append(p)p.start()
for proc in procs: proc.join()print v.value
Erik Spence (SciNet HPC Consortium)Parallel Python
22 October 201429 / 43
Page 30Using shared memory, arrays
Multiprocessing also allows you toshare a block of memory throughthe Array ctypes wrapper.Only 1-D arrays are permitted.Note that multiprocessing.Processmust be used; shared memory doesnot work withmultiprocessing.Pool.map.Note that, since arr is actually actypes object, you must print thecontents of arr to see the result.
# multiprocessing.shared.array.py
from numpy import arangefrom multiprocessing import Process,
Array
def myfuncf(a, i): a[i] = -a[i]if
name
== " main ":arr = Array(â€™dâ€™, arange(10.))procs = []
for i in range(10):
p = Process(target = myfunc,args = (arr, i))procs.append(p)p.start()
for proc in procs: proc.join()print arr[:]
Erik Spence (SciNet HPC Consortium)Parallel Python
22 October 201430 / 43
Page 31Inter-process communication
Sometimes your processes need to communicate with each other, or thechildren need to return information back to the parent. How can thisinter-process communication (IPC) be accomplished?Write the information to file, then have the processes that need theinformation read the file.
â–º Bad! I/O is not for inter-process communication!â–º Itâ€™s slow (in and out); itâ€™s inefficient; itâ€™s un-necessary.
U  http://www.nuokui.com/pdf/lvBGfVQv959I.html  se shared memory. This is a better option, but has the potential forrace conditions if not handled properly (locks, semaphores). Themultiprocessing.Queue object is thread/process safe; this can be agood option.Another IPC is direct communication using pipes.We will look at both in the following.
Erik Spence (SciNet HPC Consortium)Parallel Python
22 October 201431 / 43
Page 32multiprocessing.Pipe
The multiprocessing.Pipe object provides an anonymous pipe which servesas a connection between two processes.When called, Pipe() returns a tuple containing two Connectionobjects, one for each end of the pipe.Pipes are bidirectional by default.Arbitrary pickleable objects can be sent and received.The Pipe objects are portable:
â–º On Unix systems the pipe is implemented using either a connected
socket pair, or using os.pipe.
â–º On Windows systems named pipes (so itâ€™s not really anonymous) are
used.
Erik Spence (SciNet HPC Consortium)Parallel Python
22 October 201432 / 43
Page 33The multiprocessing module, Pipes
Note how you can send lists,and dictionaries. Anypickleable object can be sent.
# multiprocessing.pipe.py
from multiprocessing import
Process, Pipe
def sender(pipe):
pipe.send([â€™greetingsâ€™, 3.7])pipe.close()
def talker(pipe):
pipe.send(dict(name = â€™Bobâ€™,spam = 42))reply = pipe.recv()
print "talker got:", reply
# multiprocessing.pipe.py, continued
if
name
== " main ":(parentEnd, childEnd) = Pipe()Process(target = sender,args = (childEnd,)).start()
print "Parent got:", parentEnd.recv()
parentEnd.close()(parentEnd, childEnd) = Pipe()child = Process(target = talker,args = (childEnd,))child.start()
print "Parent got:", parentEnd.recv()
parentEnd.send(x * 2 for x in â€™pantsâ€™)child.join()
print "Parent finished."
Erik Spence (SciNet HPC Consor  http://www.nuokui.com/pdf/lvBGfVQv959I.html  tium)Parallel Python
22 October 201433 / 43
Page 34multiprocessing.Queue
The multiprocessing.Queue object serves as a first-in-first-out (FIFO) listof objects. The queue is a shared process-safe object.Like standard queues, this allows multiple producers and consumers toact on common data.The queue is essentially a pipe with extra locking mechanisms tocoordinate access.As such, the queue inherits the pickeability constraints of Pipe: theobjects in the queue must be pickleable.Aside: what cannot be pickled?lambda functions, bound methods (functions within object classes).open file objects, network connections, database connections.open sockets.
Erik Spence (SciNet HPC Consortium)Parallel Python
22 October 201434 / 43
Page 35The multiprocessing module, Queues
# multiprocessing.queue.py
from multiprocessing import
Process, Queue
def worker(tasks, results):try::
t = tasks.get(block = False)
except:return
result = t * 1.5results.put(result)
# multiprocessing.queue.py, continued
if
name
== " main ":n = 10tasks = Queue()results = Queue()
for t in range(n): tasks.put(t)
jobs = [Process(target = worker,args = (tasks, results))
for i in range(n)]for j in jobs: j.start()for j in jobs: j.join()while (n):
result = results.get(block = False)
print "Result:", result
n -= 1
Erik Spence (SciNet HPC Consortium)Parallel Python
22 October 201435 / 43
Page 36But thereâ€™s more!
The multiprocessing module is loaded with functionality. Other featuresinclude:multiprocessing.manager, which allows jobs to be spread over multipleâ€™machinesâ€™ (nodes).subclassing of the Process object, to allow further customization ofthe child process.multiprocessing.Event, which allows event-driven programmingoptions.multiprocess.condition, which is used to synchronize processes.  http://www.nuokui.com/pdf/lvBGfVQv959I.html  Weâ€™re not going to cover these features today.
Erik Spence (SciNet HPC Consortium)Parallel Python
22 October 201436 / 43
Page 37The multiprocessing package is ubiquitous
The multiprocessing module is the module used my many other packagesto handle parallel functionality. Some of these include:scikit-learn, a machine-learning suite.fabric, a package used to streamline SSH commands in applications.rufus, used for simplifying pipelines.PyCAM, a toolpath generator for 3-axis CNC machining.Nipype, a toolkit for neuroimaging pipelines.pydoit, a task dependency and execution manager.Pythics, laboratory instrument control software.depparse, a dependency parser.And many others.
Erik Spence (SciNet HPC Consortium)Parallel Python
22 October 201437 / 43
Page 38However, there are other options
The multiprocessing module offers a high-level interface for spawningindependent processes. As such, itâ€™s pretty handy and easy to use.However, there are other packages out there that also attempt to fill thisrole:Parallel PythonpprocessjoblibCeleryand probably others.One advantage of multiprocessing is that itâ€™s part of the standard Pythondistribution, and thus is the most commonly used.
Erik Spence (SciNet HPC Consortium)Parallel Python
22 October 201438 / 43
Page 39Other parallel approaches
There are other approaches available to parallelize your Python dataanalsysis. You may be wondering where MPI is in all of this?Python interfaces to MPI functionality have been written. There areseveral implementations available.These interafaces have all of the usual MPI functionality that youâ€™vecome to know and love.However, Iâ€™ve never seen anyone use Python MPI for data processing.Why?
â–º Python MPI interfaces are not nearly as fast as compiled MPI codes
(C, C  , Fortran).
â–º There are easier ways to parallelize your Python w  http://www.nuokui.com/pdf/lvBGfVQv959I.html  orkflows (as weâ€™ve
seen).
â–º MPI is better suited to communication-heavy problems; data analysis
usually doesnâ€™t fall into this category.
For completeness, weâ€™ll cover one example.
Erik Spence (SciNet HPC Consortium)Parallel Python
22 October 201439 / 43
Page 40Python MPI
Several interfaces to MPI have been implemented in Python.mpi4py, pypar, MaroonMPI, pyMPI, pupyMPI, . . .We will use pypar for our example.Note that, on GPC, pypar has been compiled with OpenMPI, so thatmodule must be loaded for pypar to work:The code can then be run in the usual way:
ejspence@mycomp ~> mpirun -np 4 python mycode.py
Erik Spence (SciNet HPC Consortium)Parallel Python
22 October 201440 / 43
Page 41Area-under-the-curve using pypar
# AUC.parallel.py
import pyparfrom numpy import zeros
numprocs = pypar.size()myid = pypar.rank()
# pypar.reduce needs â€™buffersâ€™ for# communication, so use these.
msg = zeros(1)answer = zeros(1)n = 20
# Number of bars.
dx = 3.0 / n
# Width of each bar.
area = 0.0
# Width of each processorâ€™s block.
width = 3.0 / numprocs
# Number of bars for each processor.
numbars = n / numprocs
# My starting x value.
x = myid * width
# Each proc. just works on numbars.
for i in range(numbars):
y = 0.7 * x**3 - 2 * x**2   4area = area   y * dxx = x   dxmsg[0] = areapypar.reduce(msg, pypar.SUM, 0,buffer = answer)
if (myid == 0):print"The area is", answers
pypar.finalize()
Erik Spence (SciNet HPC Consortium)Parallel Python
22 October 201441 / 43
Page 42Hands-on parallelization
On the following slide is code which works with the airline data.Rather than looking at the airports, the code looks at the airlines.The code reads in the files and calculates the total distance that eachairline travels, during the 1990s.  http://www.nuokui.com/pdf/lvBGfVQv959I.html  Please parallelize this code, using whatever techniques you like.Hereâ€™s how I did it:I created as many processes as I have processors.I created a queue for holding all the filenames, and a queue for holdingthe dictionaries containing the distances calculated in each file.Each process then takes a file off the queue, calculates the distancesfor that file, and puts the dictionary for that file on the results queue.When the processes are done, the parent adds up the totals for eachdictionary.
Erik Spence (SciNet HPC Consortium)Parallel Python
22 October 201442 / 43
Page 43Assignment: parallelize!
# airline.distances.py
import pandas as pd;from glob import glob;from numpy import unique
# The data files, and dictionary to hold the distances.
files = glob("/scratch/s/scinet/ljdursi/airline/AirOnTimeCSV/airOT199*csv")miles = 
for f in files:
# For each file.
data = pd.read csv(f, low memory = False)
# Read the data file.
for airline in unique(data.UNIQUE CARRIER):
# For each airline.# If the airline doesnâ€™t yet exist, add it.
if not miles.has key(airline): miles[airline] = 0.0
trips = data[data.UNIQUE CARRIER == airline]
# All the airlineâ€™s trips.
miles[airline]  = trips.DISTANCE.sum()
# Add the total distance.# Print out the answer.
for airline in miles.keys(): print airline, miles[airline]
Erik Spence (SciNet HPC Consortium)Parallel Python
22 October 201443 / 43



Free Document Search Engine. support all pdf,DOC,PPT,RTF,XLS,TXT,Ebook! Free download! You can search all kind of documents! 
http://www.downhi.com/


