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The Pairing Heap: A New Form ofSelf-Adjusting Heap
Michael L. Fredmanï¿½.4, Robert Sedgewick 2,5, Daniel D. Sleatorï¿½, andRobert E. Tarjan2,3,6
Abstract. Recently, Fredman and Tarjan invented a new, especially efficient form of heap (priorityqueue) called the Fibonacci heap. Although theoretically efficient, Fibonacci heaps are complicated toimplement and not as fast in practice as other kinds of heaps. In this paper we describe a new form ofheap, called the pairing heap, intended to be competitive with the Fibonacci heap in theory and easyto implement and fast in practice. We provide a partial complexity analysis of pairing heaps. Completeanalysis remains an open problem.
Key Words. Data structure, Heap, Priority queue
1. Introduction. A heap or priority queue is an abstract data structure consistingof a finite set of items, each having a real-valued key. The following operations onheaps are allowed:
make heap (h): Create a new, empty heap named h.
find min (h): Return an item of minimum key from heap h, without chang-
ing h.
insert (x, h): Insert item x, with predefined key, into heap h, not previously
containing x.
delete min (h): Delete an item of minimum key from heap h and return it. If h
is originally empty, return a special null item.
The find min operation can be implemented as a delete min followed by an insert,but it is generally more efficient to implement it independently. Additionaloperations on heaps are sometimes allowed, including the following:
meld (hâ‚�, hâ‚‚): Return the heap formed by taking the union of the item-disjoint
heaps hâ‚� and hï¿½. Melding destroys hâ‚� and hï¿½.
decrease key (â–², x, h): Decrease the key of item x in heap h by subtracting the
'EECS Department, University of California, San Diego, La Jolla, California 92093, USA
2
4
Computer Science Department, Princeton University, Princeto  http://www.nuokui.com/pdf/iiMBxqAqi-PI.html  n, New Jersey 08544, USA
'AT & T Bell Laboratories, Murray Hill, New Jersey 07974, USA
*Research partially supported by National Science Foundation Grant MCS 82-04031 and by BellCommunications Research
"Research partially supported by National Science Foundation Grant DCR 85-14922
"To whom correspondence should be addressed.Page 2
112
Fredman et al.
non-negative real number â–².
delete (x, h): Delete item x from heap h, known to contain it.
In order for decrease key and delete to be efficiently implementable, the locationof item x in the representation of heap h must be known; standard implementa-tions of heaps do not support efficient searching for an item. In our discussion weshall assume that a given item is in only one heap at a time.
Since n real numbers can be sorted by performing n insert operations followedby n delete min operations on an initially empty heap, the amortized time* of aheap operation for any implementation that uses binary decisions is (log n),where n is the heap size. There are many well-known heap implementations forwhich this bound is tight in the worst case per operation. Such implementationsinclude the implicit heaps of Williams [16], utilized by Floyd in an elegantin-place sorting algorithm [3]; the leftist heaps of Crane [2] as modified by Knuth[9]; and the binomial heaps of Vuillemin [15], studied extensively by Brown [1].Implicit heaps do not support melding; both leftist and binomial heaps do.
Recently Fredman and Tarjan [4] invented a new kind of heap called theFibonacci heap. The operations make heap, find min, insert, meld, and decreasekey taken only O(1) amortized time on Fibonacci heaps, whereas delete min anddelete take O(log n) amortized time. The importance of Fibonacci heaps is that inmany network optimization algorithms that use heaps, decrease key is thedominant operation, and reducing the time for   http://www.nuokui.com/pdf/iiMBxqAqi-PI.html  this operation improves the overallefficiency of such algorithms. Thus improved running times for a variety ofnetwork optimization algorithms can be obtained. See [4, 5, 6].
Fibonacci heaps have two drawbacks: They are complicated to program, andthey are not as efficient in practice as theoretically less efficient forms of heaps,since in their simplest version they require storage and manipulation of fourpointers per node, compared to the two or three pointers per node needed forother structures. Our goal in this paper is to devise a â€œself-adjusting" form ofheap having the same theoretical time bounds as the Fibonacci heap, yet easy toimplement and fast in practice. A step in this direction was taken by Sleator andTarjan [10, 11], who devised a data structure called the skew heap. The skew heapcan be regarded as a self-adjusting version of the leftist heap. On the â€œbottom-upâ€�form of skew heaps, make heap, find min, insert, and meld take O(1) amortizedtime and delete min, delete, and decrease key take O(log n) amortized time. Theproblem remaining is to find a simple data structure that reduces the amortizedtime for decrease key to O(1).
The data structure proposed in this paper, called the pairing heap, can beregarded as a self-adjusting version of the binomial heap. It shares with skewheaps ease of implementation and practical efficiency. We conjecture but areunable to prove that pairing heaps are theoretically as efficient as Fibonacci heaps
*By amortized time we mean roughly the time of an operation averaged over a worst-case sequence ofoperations. An exact definition is provided in Section 2. For a thorough discussion of this concept see[14].Page 3
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Fig. 1. An endogenous heap-ordered tree. The numbers in the nodes are keys.
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(in the amortize  http://www.nuokui.com/pdf/iiMBxqAqi-PI.html  d case and ignoring constant factors). Our best analysis gives anO(log n) time bound per heap operation.
The paper contains two sections in addition to this introduction. In Section 2we motivate, describe, and partially analyze pairing heaps. In Section 3 wepropose some variants of pairing heaps that seem to have similar efficiency.
2. Pairing Heaps. We shall represent a heap by an endogenous heap-ordered tree.(See Figure 1.) This is a rooted tree in which each node is a heap item, with theitems arranged so that the parent of any node has key no greater than that of thenode itself. (The term "endogenous" means that we do not distinguish between atree node and the corresponding heap item; see [13].)
As a primitive for combining two heap-ordered trees, we use linking, whichmakes the root of smaller key the parent of the root of larger key, with a tiebroken arbitrarily. (See Figure 2.) If we use an appropriate tree representation, alinking operation takes O(1) time in the worst case.
Of the heap operations, delete min is the most important and the mostcomplicated to implement. Thus we shall discuss the other operations first. We
88-88
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Fig. 2. Linking two heap-ordered trees. The triangles denote trees of arbitrary structure.Page 4
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Fig. 3. The half-ordered binary tree corresponding to theheap-ordered tree of Figure 1.
carry out these operations as follows:
make heap (h): Create a new, empty tree named h.
find min (h): Return the root of tree h.
1
insert (x, h): Make x into a one-node tree and link it with tree h.meld (hâ‚�, hâ‚‚): Return the tree formed by linking trees hâ‚� and hâ‚‚.decrease key (â–², x, h): Subtract â–² from the key of item x. If x is not the rootof tree h, cut the edge joining x to its parent and link the two trees f  http://www.nuokui.com/pdf/iiMBxqAqi-PI.html  ormedby the cut.
We perform delete using delete min:
delete (x, h): If x is the root of tree h, perform a delete min on h. Otherwise,cut the edge joining x to its parent, perform a delete min on the tree rootedat x, and link the resulting tree with the other tree formed by the cut.
The data structure we use to make these implementations efficient is the child,sibling representation of a tree, also known as the binary tree representation [8].Each node has a left pointer pointing to its first child and a right pointer pointingto its next older sibling. This representation allows us, and indeed forces us, toorder the children of every node, a fact that we shall exploit below. The effect ofthe representation is to convert a heap-ordered tree into a half-ordered binary treewith empty right subtree, where by half-ordered we mean that the key of any nodeis at least as small as the key of any node in its left subtree. (See Figure 3.) Inorder to make decrease key and delete efficient, we must store with each node athird pointer, to its parent in the binary tree.Page 5
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Fig. 4. Two-pointer representation allowing parent access of the binary tree in Figure 3. The bitsindicating left and right only children are omitted.
Remark. Instead of using three pointers per node, we can manage with onlytwo, at a cost of a constant factor in running time. We make each node in thebinary tree point to its left child, and to its right sibling or to its parent if it hasno right sibling. (See Figure 4.) With each only child we must also store a bitindicating whether it is a left child or a right child.
Each of the operations make heap, find min, insert, meld, and decrease key hasan O(1) worst-case running time. A delete operation takes O(1) time plus onedelete min operation. Thus de  http://www.nuokui.com/pdf/iiMBxqAqi-PI.html  lete min and delete are the only non-constant-timeoperations.
Let us consider how to perform delete min on a heap-ordered tree. We begin byremoving the tree root, which is an item of minimum key. This produces acollection of heap-ordered trees, one rooted at each child of the deleted node. Wecombine all these trees by linking operations to form one new tree. The order inwhich we combine the trees is important, however.
Whatever combining rule we choose will have a O(n) worst-case time bound,since we can build any n-node tree, in particular the tree with a root and n 1children, by a suitable sequence of O(n) make tree, insert, and meld operations.However, for a suitable combining rule we shall be able to prove an O(log n)amortized bound.Page 6
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Fig. 5. The naive version of delete min takes O(n) amortized time. After the root with key 1 is deleted,the second and successive children are linked to the first.
The naive combining rule is to choose one of the trees and successively linkeach of the remaining ones with it. Unfortunately this method takes O(n)amortized time per operation: Figure 5 shows that an insert followed by adelete min can take (n) time while recreating the initial tree structure.
A more promising way of combining the trees is to make one pass linking themin pairs and then a second pass linking each of the remaining trees with a selectedone. Still, if we are not careful about how the trees are paired during the first pass,this method can take âœª(âˆšn) amortized time. The example of Figure 6 shows thatscrambling the trees before the pairing pass can cause an insert followed by adelete min to take (âˆš) time while recreating the initial tree structure. On theother hand, a simple analysis gives an O(âˆšn) amortized bound no matter how thetrees   http://www.nuokui.com/pdf/iiMBxqAqi-PI.html  are scrambled, thus showing that this method is at least somewhat betterthan the naive one.
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To derive the upper bound, we shall use the "potential" technique of Sleator(see [14]). Introducing this technique also allows us to clarify the notion of"amortized time." To each configuration of the data structure we assign a realnumber called the potential of the configuration. For any sequenceof m operations, we define the amortized time a, of the ith operation by aï¿½tï¿½   Þ¡ âˆ’ Þ¡âˆ’19
P-1, where t, is the actual time of the ith operation and â‚�, andare the potentials before and after the operation, respectively. That is, theamortized time of an operation is its actual running time plus the net increase inpotential it causes. Summing over all the operations, we have
i-1
(1)
m
m
m
t; = Î£ (a; âˆ’ â˜€;   ï¿½;-1)
(a)
  0
Î£Ï„
i=1
i=1
(a
-
If the potential is chosen so that it is initially zero and is always non-negative,then (1) implies
(2)
m
m
Î£Ï„Î¹Ï‚ Î£Î±
i=1
i=1
That is, the total amortized time is an upper bound on the total actual time. Thismeans that the amortized time of an operation can be used as a conservativeestimate of its actual running time, as long as total running time is the measure ofinterest.Page 7
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Fig. 6. Scrambled pairing during a delete min operation takes ï¿½(âˆšn) amortized time. Here n =k(k   3)/2. For clarity, the keys of nodes are not shown.
To analyze scrambled pairing, we define the potential of a node with d childrenin an n-node heap to be 1 - mind, [âˆšn]. We define the potential of a collectionof heaps to be the sum of the potentials of its nodes. Observe that the potential ofan empty  http://www.nuokui.com/pdf/iiMBxqAqi-PI.html   heap is zero, and the potential of any collection of heaps is non-nega-tive, since the sum over n nodes of their numbers of children is the total numberof nodes minus the number of trees. Thus (2) holds. A linking operation can onlydecrease the potential, and cutting an edge can increase the potential by at mostone (as long as the heap size does not change). Since make tree, find min, insert,meld, and decrease key all take O(1) actual time and perform O(1) links and cuts,each has an O(1) amortized time bound.
Consider a delete min operation. Removing the tree root causes a potentialincrease of at most 2âˆšn, of which one âˆšn accounts for the increase in thepotential of the deleted root (from at least 1 - âˆšn to 0), and the other âˆšnaccounts for one unit of increase per node having at least âˆšn children (such anincrease can be caused by the decrease in heap size by one.) Suppose that k treesremain after deleting the root. The actual time of the delete min is O(k). Since wePage 8
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are ignoring constant factors, let us estimate this time as one plus the number oflinks in the pairing pass, or [k/2]   1. Each of the links in the pairing passcauses the potential to drop by one except for links that add a child to a nodealready having âˆšn children. There can be at most âˆšn of these exceptional links,since each corresponds to a disjoint tree containing at least âˆšn nodes. Thus thelinks cause a potential drop of at least [k/2] - âˆšn. Summing the estimate ofactual time plus the potential changes, we see that the amortized time of deletemin is [k/2]   1   2âˆšn   (âˆšn âˆ’ [k/2]) = O(âˆšn). The same estimate holds
for delete.
To obtain an algorithm that is theoretically competitive with the known heapimplementations, we use the pairing method of combining trees but choose thetrees to be paired carefully. We order the children of each node in the order theywere attached b  http://www.nuokui.com/pdf/iiMBxqAqi-PI.html  y linking operations, with the first (youngest) child being the onemost recently attached. That is, when a node y is made the child of a node bylinking, y becomes the first child of x. Note that this ordering of children isindependent of key order. To perform a delete min operation, we remove the treeroot and link the first and second remaining trees, then the third and fourth, andso on. (If the original root had an odd number of children, one tree remainsunlinked.) Then we link each remaining tree to the last one, working from the
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Fig. 7. A delete min operation on a pairing heap.
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next-to-last back to the first, in the opposite order to that of the pairing pass. (SeeFigure 7.)
We call the resulting data structure the pairing heap. We believe that this datastructure is as efficient as Fibonacci heaps in the amortized case. That is, we makethe following conjecture:
Conjecture 1. The various operations on pairing heaps have the followingamortized running times: O(1) for make heap, find min, insert, meld, anddecrease key, and O(log n) for delete min and delete.
We are unable to prove this conjecture. However, we can obtain the followingweaker result:
THEOREM 1. On pairing heaps, the operations make heap and find min run inO(1) amortized time, and the other operations run in O(log n) amortized time.
We shall prove Theorem 1 using the potential technique. To guide us in ourchoice of a potential function, let us examine the effects of a delete min operation
PAIRING AFTERROOT DELETION
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E F
COMBININGRIGHT-TO-LEFT
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Fig. 8. A delete min operation on the binary treeform of the pairing heap in Figure 7. Note   http://www.nuokui.com/pdf/iiMBxqAqi-PI.html  that asubtree in the ordinary form of a pairing heapcorresponds to a node and its left subtree in thebinary tree form.Page 10
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Fig. 9. The effect of a linking operation during a delete min. The figure shows the outcome if the key ofnode x is greater than the key of node y. If the key of x is less than that of y, nodes x and y areinterchanged, as are subtrees A and B. This is indicated by the double arrows.
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Fig. 10. The effect of a delete min on a half-ordered binary tree. The slanted double arrows (between aand b, c and d, e and Æ’) denote possible interchange of single nodes. The horizontal double arrowsdenote possible interchange of the entire subtrees. Nodes aâ€™â€¦â€¦â€¦â€¦, g' are some permutation of nodes
u...., g.
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on the binary tree representation of a heap. Figure 8 shows a delete min operationon the binary tree form of the heap in Figure 7. Figure 9 illustrates the generaleffect of a single linking operation. Figure 10 illustrates the general effect of anentire delete min. We see that up to permutation of nodes and exchange of leftand right subtrees a delete min has essentially the same effect as discarding theroot and splaying at the last node in symmetric order, where splaying is theheuristic used by Sleator and Tarjan in their self-adjusting search trees [10, 12].(See Figure 11.) Thus it is not surprising that by using their potential function(which is invariant under exchange of left and right subtrees) we can proveTheorem 1.
We define the size s(x) of a node x in a binary tree to be the number of nodesin its subtree including x, the rank r(x) of x to be l  http://www.nuokui.com/pdf/iiMBxqAqi-PI.html  og s(x)*, and the potential ofa set of trees to be the sum of the ranks of all nodes in the trees. Then thepotential of a set of no trees is zero and the potential of any set of trees isnon-negative, so the sum of the amortized times is an upper bound on the sum ofthe actual times for any sequence of operations starting with no heaps.
Observe that every node in an n-node tree has rank between 0 and log n. Weimmediately deduce that make heap and find min have an O(1) amortized timebound, since they cause no change in potential. The operations insert, meld, anddecrease key have an O(log n) amortized time bound, since each such operationcauses an increase of at most log n   1 in potential: a link causes at most two
*We use binary logarithms throughout this paper.Page 12
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nodes to increase in rank, one by at most log n and the other by at most 1, wheren is the total number of nodes in the two trees. (Only the roots of the two treescan increase in rank. The root of initially smaller size can increase in rank by atmost log n, and the root of initially larger size can increase in rank by at most 1,since its size at most doubles.)
The hardest operation to analyze is delete min. Consider the effect of a deletemin on a tree of n nodes. We shall estimate the running time of this operation asone plus the number of links performed. The number of links performed duringthe first pass (pairing) is at least as great as the number performed during thesecond pass (combining the remaining trees). Thus we shall charge two per linkduring the first pass. Let us estimate the potential change caused by a first-passlink. Referring to Figure 9, and assuming that subtree C is non-empty, we seethat the increase in potential is log(s(a)   s(b)   1) âˆ’ log(s(b)   (c)   1). Theconcavity of the log function implies that log x   log y for x, y > 0, x   y â‰¤ 1 ismaximized at valu  http://www.nuokui.com/pdf/iiMBxqAqi-PI.html  e -2 when x = y = 1/2. It follows that
-
log(s(a)   s(b)   1)   log(s(c)) âˆ’ 2 log(s(a)   s(b)   s(c)   2)
log((s(a)   s(b)   1)/(s(a)   s(b)   s(c)   2))
 log(s(c)/(s(a)   s(b)   s(c)   2)) â‰¤ âˆ’2.
-
This and the inequality log(s(c)) â‰¤ log(s(b)   s(c)   1) give log(s(a)   s(b)  1) âˆ’ log(s(b)   s(c)   1) â‰¤ 2 log(s(a)   s(b)   s(c)   2) â€” 2 log(s(c)) â€” 2.Since s(x) = s(a)   s(b)   s(c)   2, 2 log(s(x)) âˆ’ 2 log(s(c)) - 2 is an upperbound on the potential increase caused by the link. The only link during the firstpass that can have subtree C empty is the last one. In this case the potentialincrease is at most log(s(a)   s(b)   1) âˆ’ log(s(b)   1) â‰¤ 2 log(s(a)   s(b)  2) = 2 log(s(x)).
Now let us sum the potential increase over all first-pass links. Let x1, x2,..., X2kbe the nodes whose keys are compared during the first-pass links. That is, in theoriginal binary tree x, is the left child of the root, xâ‚�â‚�â‚� for 1 â‰¤ i â‰¤ 2k is the rightchild of x,, and the last first-pass link involves comparing the keys of x2;-1 andx2;. Let s denote the size function on the original binary tree. Then the potentialincrease caused by the first-pass links is at most
k-1
-
Î£ (2 log s(x2-1) â€” 2 log s(x2;) âˆ’ 2)   2log s(x2k-1)
i = 1
k-1
-
<Î£ (2 log s(x2;-1) â€” 2 log s(x2; 1))   2 log s(x2x-1) â€” 2(k âˆ’ 1)
i=1
since s(x2)s(x2i 1)
â‰¤ 2 log s(xâ‚�) â€“ 2(k âˆ’ 1) since the sum telescopes
(3)
< 2 log n - 2(k âˆ’ 1)
Ù…Ø¯Ù…Page 13
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The other potential changes that take place during the delete min are a decreaseof log n when the original tree root is removed and an increase of at mostlog(n 1) during the second pass. To verify the latter bound, we note that aone-to-one correspondence Æ’ can be established between the tree nodes before thesecond pass and the nodes after the second pass such that s'(x) â‰¥   http://www.nuokui.com/pdf/iiMBxqAqi-PI.html  sâ€³(f(x))unless f(x) is the tree root after the second pass. Here s' denotes the sizefunction before the second pass and s" denotes the size function after the secondpass. (In Figure 10, the mapping Æ’ is given by f(x) = x'.) Thus the potentialincrease caused by the second pass can be associated with the tree root after thepass, and its magnitude is at most log(n âˆ’ 1).
It follows that the amortized time of the delete min operation is an actual timeof 2k   1 plus a potential increase of at most 2 log n - 2(k âˆ’ 1) âˆ’ log n  log(n - 1) for a total of at most 2 log n   3. An O(log n) bound on the amortizedtime of decrease key and delete follows immediately, finishing the proof ofTheorem 1.
3. Variants of Pairing Heaps. The data structure proposed in Section 2 is not theonly way to make use of the pairing idea. In this section we propose four variantsof the structure. The first three involve changing only the implementation of
(10)
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Fig. 12. A delete min operation using the front-to-back method.Page 14
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Fig. 13. A delete min operation using the back-to-front method.
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delete min; the fourth uses a forest of trees instead of a single tree to represent aheap.
Instead of making the two passes of delete min in opposite directions (front-to-back followed by back-to-front), it seems natural to make them in the samedirection, either both front-to-back (see Figure 12) or both back-to-front (seeFigure 13). We call the former method the front-to-back variant and the latter theback-to-front variant. With either method the two passes can be combined into asingle pass. In or  http://www.nuokui.com/pdf/iiMBxqAqi-PI.html  der to make the back-to-front variant a one-pass method, wemust change the pointer structure representing the tree, since we must be able toaccess the children of a node in reverse order, older to youngest. One possibility isto use a ring representation in which the lists of children are singly linked inreverse order, with the first child pointing to the last and each parent pointing toits first child (see Figure 14). Additional pointers must be added to supportdecrease key and delete.
Another possible combining rule for delete min is to make repeated passes overthe trees, linking them in pairs, until only one tree remains. (See Figure 15.) Wecall this the multipass variant.Page 15
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Fig. 14. The ring representation of the heap-ordered tree in Figure 1.
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Our fourth method, the lazy variant, uses the multipass idea in combinationwith lazy linking. We represent a heap by a forest of rooted trees rather than asingle tree. The trees in the forest are ordered in chronological order by the timethey were added to the forest, least recent to most recent. To perform find min,we run through the trees once, linking them in pairs, and return any root ofminimum key. To perform insert, we make the item to be inserted into a one-nodetree and add it to the forest as the new last tree. To perform delete min, we carryout find min, delete the root of minimum key, and concatenate the list of subtreesrooted at its children to the back of the list of remaining trees. (See Figure 16.) Toperform meld, we concatenate the two lists of trees. To perform decreasekey(A, x, h), we subtract A from the key of x, cut the edge joining x to its parentif it has one, and if such a cut takes place we add the tree rooted at x to the backof the list of trees. To perform delete(x, h), we cut the edge  http://www.nuokui.com/pdf/iiMBxqAqi-PI.html   joining x to itsparent if it has one, delete node x, and concatenate the list of subtrees rooted atits children to the back of the list of remaining trees.
None of these variants is easy to analyze. We can prove Theorem 1 for theback-to-front variant using essentially the same analysis as in Section 2. For themultipass and lazy variants, we can prove an O(log n log log n/log log log n)bound on the amortized time per heap operation, using a more complicatedargument. For the front-to-back variant, we are unable to establish any usefulbound, since our analogy with splaying breaks down in this case. We leave as anopen problem to prove or disprove Conjecture 1 for the pairing heap or any of itsvariants. Theorem 2 below derives our bound for the amortized time of themultipass variant. The analysis of the lazy variant is similar but more com-plicated.Page 16
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Fig. 15. A delete min operation using the multipass method.
THEOREM 2. The amortized time per heap operation for the multipass variant isO(log n log log /log log log n).
To prove Theorem 2 we use a slight variant of the potential function used toprove Theorem 1. Let P(T) be the potential of a binary tree defined as in theproof of Theorem 1. We shall use instead the potential function Q(T) =P(T)/log log log n, where n is the number of nodes in T. The most difficultoperation to analyze is delete min, and we proceed with this analysis. (Theanalysis of the other operations follows the proof of Theorem 1, and is omitted.)
Let T be a binary tree representing a heap and let T' be the tree that resultsby carrying out a delete min operation. Let k be the number of nodes on the rightPage 17
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Îµ
path* of T after the root has been deleted. The time necessary for the delete min isO(k   1), since there are k 1 link operations in total. We shall estimate theactual time taken by the delete min to be É›(k   1), where É› is a sufficiently smallpositive constant whose value we choose below. (That is, we assume that in oneunit of time we can do a sufficiently large constant amount of work on thedata structure). The amortized time of the delete min is thusÉ›(k   1)   P(T')/log log log(n âˆ’ 1) âˆ’ P(T)/log log log n. Since P(T') =-O(n log n), we have P(T')/log log log(n âˆ’ 1) âˆ’ P(T')/log log log n = O(1).Thus the amortized time of the delete min is É›k   (P(T') âˆ’ P(T))/log log log n  O(1).
-
-
-
Our main task is to estimate P(T') - P(T). Let nâ‚�, n2,..., nk be the nodes ofthe right path along which pairing takes place, with n being farthest from theroot. Let s be the size of the subtree rooted at nâ‚�. The change in the potential Presulting from linking n, and nâ‚� 1 is at most log(s; â€” $; 2) â€” log sâ‚� 1, where welet $; 2
0 if i   2 > k. Referring to this potential change as tâ‚�, we havet;<logs;-1-log S; 1 if we let so = log n. We conclude that the sum of anysubset of the t; in any one pass is bounded by log n, since the sum
i
*By the right path of a binary tree we mean the path from the root through right children to a nodewith no right child.Page 18
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Eâ‚�si<ki odd (logs;-1 - log s; 1) telescopes and all its terms are positive. Since
odd(logthere are [log k] pairing passes altogether, P(T') â€“ P(T) â‰¤ [log k](log n).
This somewhat weak bound is enough to give a good estimate of the amortizeddelete min time if k is sufficiently small. Suppose
k â‰¤ c(log n)(log log n)/(log log log n),
  http://www.nuokui.com/pdf/iiMBxqAqi-PI.html  where c is a sufficiently large positive constant, to be chosen below. Then theactual time of the delete min is O(k) = O(log n)(log log n)/(log log log n), andthe potential increase is at most [log k](log n)/log log log n   O(1)O(log n)(log log n)/log log log n, so the amortized time of the delete min isO((logn)/(log log n)/log log log n).
To obtain the same bound for the case of large k, i.e. k >c(log n)(log log n)/log log log n, we must estimate P(T') âˆ’ P(T) more carefully.In particular, we shall show that in this case the contribution of the negative tï¿½ injust the first pass is enough to cause a negative potential change that makes theamortized time of the delete min O(1). Since
(4)
Î£log(S/S; 2) â‰¤ logn,
1<i<k-1i odd
at least k/4 of the terms in (4) are bounded above by (4log n)/k. Sincek> clogn it follows for each of these k/4 values of i (using the approximation2* = 1   O(x) for bounded x) that
(5)
-
Si - Si 2
Si 1
Si - Si 2
Si 2
=
o(logn)
From (5) we conclude that there are at least k/4 values of i for whicht; â‰¤ -log(k/(c' log n)) for some positive constant c'. Combining thiswith our previous estimate for the other t, we obtain P(T') - P(T) â‰¤[log k](logn) - k/4 log(k/(c' log n)).
Now if c is chosen sufficiently large, we obtain from the above estimate andk > c(log n)(log log n)/log log log n that P(T') âˆ’ P(T) â‰¤ âˆ’ c'k log log log n  O(1), where c" is a positive constant depending on c and c'. Thus the amortizedtime of the delete min is ek - c'k   O(1). Choosing e = c" gives an O(1) bound.We conclude that whether k is small or large the amortized time of delete minis O((log n)(log log n)/log log log n), as desired.
&
Jones [7] has compared the experimental running times of pairing heaps andseveral other kinds of heaps. His experiments indicate that pairing heaps arecompetitive in practice with all known alternati  http://www.nuokui.com/pdf/iiMBxqAqi-PI.html  ves. Further experiments need tobe done to determine the best implementation of the structure in practice.Page 19
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