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1. IntroductionConvex optimization problems (of minimizing a given convex function in a given convex set)form a beautiful research area with very powerful theory and algorithms and many far-reachingapplications. Among the main algorithms to solve convex optimization problems are moderninterior-point methods. The modern theory of interior-point methods have flourished sinceKarmarkarâ€™s ground-breaking paper [11].Every convex optimization problem can be paired with another convex optimization problembased on the same data, called its dual. Rigorous solution methods for convex optimizationproblems typically generate, together with solutions to the problem at hand (primal problem),solutions for its dual. A particularly successful line of research pursued methods that workâ€œequally hardâ€� at solving both primal and dual problems simultaneously, called primal-dualsymmetric methods (for a rigorous definition, see [45]).In the special cases of linear programming (LP) and semidefinite programming (SDP), theseprimal-dual symmetric methods, in addition to carrying certain elegance, led to improved resultsin theory, in computation, and in applications.Part of the success of primal-dual symmetric methods for LP and SDP might stem from the factthat both classes admit convex conic formulations where the underlying cone is self-dual (theprimal convex cone and the dual convex cone are linearly isomorphic) and homogeneous (theautomorphism group of the cone acts transitively in its interior). Convex cones that are bothhomogeneous and self-dual are called symmetric cones. The success of primal-dual symmetricinterior-p  http://www.nuokui.com/pdf/aSKd6-rPJ6nI.html  oint methods was further extended to the setting of symmetric cone programming,which led to deeper connections with other areas of mathematics.In this paper, we will extend many of the underlying mathematical entities, analyses anditeration complexity bounds of these algorithms to a general convex optimization setting (witharbitrary convex cones).The primal variable x lives in a finite dimensional vector space E and the dual variables y ands live in the finite dimensional vector spaces Y and Eâˆ— respectively, where Eâˆ— is the dual spaceof E. Every convex optimization problem can be put into the following conic form (under somemild assumptions):(P) inf âŒ©c, xâŒªAx = b,x âˆˆ K,where A : E â†’ Yâˆ— is a linear map, b âˆˆ Yâˆ—, c âˆˆ Eâˆ— and K âŠ‚ E is a pointed, closed, convexcone with nonempty interior. We assume that A, b, c are given explicitly and K is described viaF : int(K) â†’ R, a logarithmically homogeneous self-concordant barrier function for K (definedin the next section). We assume without loss of generality that A is surjective (i.e., AE = Yâˆ—).
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We define the dual of (P) as(D) sup âŒ©b, yâŒªDAâˆ—y   s = c,s âˆˆ Kâˆ—,where Kâˆ— is the dual of cone K, namelyKâˆ— := s âˆˆ Eâˆ— : âŒ©s, xâŒª â‰¥ 0, âˆ€x âˆˆ K.We are using âŒ©ï¿½,ï¿½âŒª to denote the dual pairing on (E,Eâˆ—) and âŒ©ï¿½,ï¿½âŒªD to denote the dual pairingon (Y,Yâˆ—). Aâˆ— : Y â†’ Eâˆ— denotes the adjoint of A defined by the equations:âŒ©Aâˆ—y, xâŒª = âŒ©Ax, yâŒª
D, âˆ€ x âˆˆ E, y âˆˆ Y.
For both of these spaces E and Y, we identify the dual of the dual space with the originalspace, i.e., Eâˆ—âˆ— = E and Yâˆ—âˆ— = Y. In this setting, under our assumptions, Kâˆ— is also a pointed,closed convex cone with nonempty interior and Kâˆ—âˆ— = K. Now, it is not difficult to verify thatunder our definitions, the optimization problem dual to the problem (D) is indeed equivalentto (P). Primal-dual symmetric conic formulations of convex optimization problems with s  http://www.nuokui.com/pdf/aSKd6-rPJ6nI.html  elf-concordant barrier functions were suggested by Nesterov and Nemirovski [28], and since theirinception in the early 1990s, such formulations have had a significant influence on modernconvex optimization.In this paper, we utilize many of the fundamental techniques developed throughout the historyof interior-point methods. One of the main algorithms we design and analyse is a predictor-corrector algorithm generalizing the algorithm of Mizuno, Todd and Ye [15] from the LP setting.However, even in the LP setting, some of our algorithms are new. Our algorithms use Newtondirections as in Renegarâ€™s algorithm for LP [35], and one of our main algorithms uses a similarpredictor-corrector scheme, but both predictor and corrector parts in a primal-dual setting.The modern theory of interior-point methods employed the concept of self-concordant barrierfunctions (see Nesterov and Nemirovski [29]). The Hessians of these nice convex functionsinduce local metrics with excellent properties. For instance, the unit ball induced by theHessian at a point, called the Dikin ellipsoid, is contained in the cone.The self-concordance property implies that, as we make local moves in the domain of the barrierfunction, the local metrics do not change fast unless their norms are large. More precisely, thespeed of the change in the local metric can be bounded in terms of the local metric itself.One of the indicators of how good a barrier function is (in terms of the local metrics it generates)can be measured by how well the Dikin ellipsoid approximates the domain of the function. Thisleads to the notion of long-step Hessian estimation property (defined in Section 2) of barriers.This property amounts to extending the controlled change of the Hessian of the barrier tothe â€œbest, norm-like local approximationâ€� of the domain of the barrier. Various long-stepstrategies for interior-point methods have been investigated extensively in [  http://www.nuokui.com/pdf/aSKd6-rPJ6nI.html  21]. This long-stepHessian estimation property has been proven for self-scaled barriers [30, 31] (whose domains are
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symmetric cones and these barriers have been completely classified [8, 9, 42]) and hyperbolicbarriers [6] (whose domains are hyperbolicity cones; for results on the structure of these conessee [6, 1, 37, 38]), but there exist barriers for which this property fails.For a related, but weaker notion of long-step, also see [26]. Indeed, we would like our algorithmsto exploit such properties when they are present. (Beyond the set-up of symmetric conesand self-scaled barriers, exploitation of this long step property forces us to break the primal-dual symmetry of our algorithms in the favor of the problem with barrier function admittingthis property.) Our general approach and many of our main technical results are primal-dualsymmetric (in the sense of [45]); however, beyond symmetric cones and self-scaled barriers,there may be advantages to breaking the primal-dual symmetry in favor of the better behaved(or better posed) problem. A large part of these favorable structures of hyperbolic barriersthat we understand, lies with the long-step Hessian-estimation property, another large part arethe special algebraic structures given by these polynomials defining the self-concordant barriers(such structures created advantageous situations for breaking primal-dual symmetry, even inthe case of convex optimization with univariate polynomials, see [22, 5, 34]). Our approachalso provides useful tools for exploiting such structures when they are present.Independent of this work, recently, simultaneously with an announcement of this work [18],Renegar announced a primal-dual affine-scaling method for hyperbolicity cone programming[39] (also see Renegar and Sondjaja [40]). Nesterov and Todd [30, 31] present very elegantprimal-dual interior-point algori  http://www.nuokui.com/pdf/aSKd6-rPJ6nI.html  thms with outstanding mathematical properties in the settingof self-scaled barriers; however, beyond self-scaled barriers, there are many other primal-dualapproaches that are not as symmetric, but retain some of the desired properties (see [47, 20, 2,3, ?, 25]).Some recent study of the interior-point methods and the central paths defined by self-concordantbarriers led to connections with Riemannian geometry, see [32, 27]. We also make some ad-ditional connections to Riemannian geometry through the local primal-dual metrics that weutilize in this paper.Hessians of self-concordant barriers, in addition to inducing local metrics, provide linear iso-morphisms between primal and dual spaces E and Eâˆ—. In the special case of self-scaled barriers,we have F (w) int(K) = int(Kâˆ—) for every w âˆˆ int(K). We focus on generalization of suchbehaviour and simulate it with a symmetric positive-definite bilinear form T2 mapping Eâˆ— toE. Upon fixing an inner product (e.g., based on the Hessians of F and Fâˆ— evaluated at thestarting pair (x(0),s(0)) and considering realization of T2 : Rn â†’ Rn, this leads to (via itsunique self-adjoint, positive-definite square-root T) construction of a v-space as a space that isâ€œhalf-way betweenâ€� E and Eâˆ—, i.e., E(âˆ—/2).The overall structure of the remainder of this paper is as follows:â€¢ Section 2 presents some fundamental notation, definitions and properties of underlyingprimal-dual spaces and the class of convex barrier functions.
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â€¢ Section 3 presents a new primal-dual scaling map based on integration of the barrierâ€™sHessian.â€¢ Section 4 presents some low-rank update formulae for the construction of local primal-dual metrics and connects these formulae to classical work on quasi-Newton updates.â€¢ Section 5 delves deeper into investigating the relationship between the set of Hessiansof self-concordant barriers and the set  http://www.nuokui.com/pdf/aSKd6-rPJ6nI.html   of local primal-dual metrics we use.â€¢ Sections 6 and 7 combine a crude approximation of the scaling from Section 4 with thetechnique of Section 3 to derive and analyse some theoretically efficient interior-pointalgorithms for convex programming.â€¢ Section 8 examines some of the special properties of our approach for hyperbolic conesthat may make our techniques particularly effective.â€¢ Some side issues, such as technical details of primal-dual symmetry of our approach(which is established via geodesic convexity of the underlying sets of local metrics),details of the complexity analysis in terms of individual tensor terms and with specificabsolute constants, and the numerical evaluation of integrals of Hessians are relegatedto Appendices A, B and C respectively.Before moving into the technical development, we next summarize the major goals of the paper,highlight some of the major ideas, and describe how our results fit in the general frameworkof interior-point methods and in which way our results improve the state-of-the-art in interior-point-methods for general convex cones:â€¢ Since the proposal of primal-dual symmetric polynomial-time interior-point algorithmsin the late 1980â€™s, the problems of determining which classes of convex optimizationproblems admit such algorithms and of determining what worst-case iteration com-plexity bounds are achievable for such algorithms have been of great interest to manyresearchers. One of our major goals is to prove that for all convex optimization problemsin the conic form, there exists such a primal-dual symmetric interior-point algorithmattaining the current best, worst-case iteration complexity bound for interior-point al-gorithms. Another major goal is to construct these proofs and develop the underlyingtheory in such a manner that in addition to the usual theoretical goals, paves the wayfor numerical implementations and further inspires the design and analy  http://www.nuokui.com/pdf/aSKd6-rPJ6nI.html  sis of betteralgorithms.â€¢ Some of the highlights in the paper include the construction of primal-dual metricswith special properties via integration of Hessians of convex barrier functions, newdecompositions for the existing rank-4 update formulae for interior-point methods [47],that are written as two consecutive rank-2 update formulas, with the second rank-2formula exposing new, very meaningful terms in regard to proximity to the central path.Another feature of the paper is on the one hand, a high-level complexity analysis thatreveals geometric and algebraic insights and emphasizes the generality of the framework,on the other hand, a very detailed term by term analysis (relegated to an appendix)
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that is very useful in designing robust algorithms which perform numerical computationsaccurately.â€¢ Even though the theoretical analysis with the polynomial iteration complexity boundonly applies to short-step version of the algorithm, our development of the underlyingtheory does properly generalize Nesterov and Toddâ€™s primal-dual symmetric, long-stepalgorithms and in more general settings is applicable to the analysis of long-step algo-rithms, provided one is willing to sacrifice at least some of the primal-dual symmetrywhen necessary (that is, beyond the symmetric cone case).â€¢ We also provide short proofs of existence of integral scalings, and a relatively transpar-ent proof of nonexistence of pointwise evaluated primal-dual Hessian metrics beyondsymmetric cones. This proof utilizes an axiomatic characterization of Euclidean JordanAlgebras in an elementary way.â€¢ We further provide deeper connections from primal-dual metrics for interior-point meth-ods to quasi-Newton methods, Riemanian geometry (both via integration of Hessians,and via a primal-dual symmetry proof (Appendix A)).â€¢ Algorithms that we analyse are new even for Linear Programming   http://www.nuokui.com/pdf/aSKd6-rPJ6nI.html  problems. In ourcomputational experiments, we observed that the practical versions of the algorithmswith low-rank updates save a few Cholesky decompositions on many of the test instances(see [19]). This is already a promising development indicating some computationalpromise of the approach. The algorithms allow for adjusting the amount of the second-order information utilized from one iteration to the next.2. PreliminariesIn this section, we introduce some of the fundamental concepts, definitions and properties thatwill be useful in the rest of the paper. For a more detailed exposure to these concepts, see thestandard references [29, 30, 31, 36, 23] as well as [45, 47].Definition 2.1. (Self-concordance) Let K âŠ‚ E be a pointed, closed convex cone with nonemmptyinterior and let F : int(K) â†’ R be a C3-smooth, closed convex function such that the domainof F is int(K) and there exists Ï‘ âˆˆ R such that, for every t > 0,F(tx) = F(x) âˆ’ Ï‘ln(t),and|D3F(x)[h, h, h]| â‰¤ 2(D2F(x)[h, h])
3/2
(1)for all x âˆˆ int(K) and for all h âˆˆ E. Then F is called a Ï‘-logarithmically homogeneousself-concordant barrier (Ï‘-LHSCB) for K.It follows from the above definition that Ï‘ â‰¥ 1 and that for every sequence in the interior ofK, converging to a boundary point of K, the corresponding function values F(x) â†’  âˆž.
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If F is a Ï‘-LHSCB for K, then its Legendre-Fenchel conjugateFâˆ—(s) := supâˆ’âŒ©s, xâŒª âˆ’ F(x) : x âˆˆ int(K),is a Ï‘-LHSCB for the dual cone Kâˆ— (Nesterov and Nemirovskii [29]). We refer to Fâˆ— simply asthe conjugate barrier.Once we have a Ï‘-LHSCB F for K, at every point x âˆˆ int(K), F (x)[ï¿½,ï¿½] : E âŠ• E â†’ R is asymmetric, bilinear, positive-definite form. Hence, the Hessian of F defines a local metric. Forevery h âˆˆ E the local norm induced by F at x is||h||
x
:= âŒ©F (x)h, hâŒª1/2.Moreover, for every x âˆˆ int(K), we may think of F (x) : E â†’ Eâˆ— as a   http://www.nuokui.com/pdf/aSKd6-rPJ6nI.html  linear map from the primalspace to the dual space. Therefore, [F (x)]
âˆ’1
: Eâˆ— â†’ E is well-defined and [F (x)]
âˆ’1
[ï¿½,ï¿½] :E
âˆ— âŠ• Eâˆ— â†’ R is a symmetric, bilinear, positive-definite form. For every u âˆˆ Eâˆ—, we define
||u||
âˆ—x
:=âŒ©u,[F (x)]
âˆ’1
uâŒª1/2.Proposition 2.2. Let F be a Ï‘-LHSCB for K. Then for every x âˆˆ int(K), ||ï¿½||
âˆ—x
is the normdual to ||ï¿½||
x
. I.e., for every x âˆˆ int(K),||u||
âˆ—x
= supâŒ©u, hâŒª : ||h||
xâ‰¤ 1,h âˆˆ E, âˆ€u âˆˆ Eâˆ—.
The above proposition implies:|âŒ©u, hâŒª| â‰¤ ||u||
âˆ—x
||h||
x, âˆ€u âˆˆ Eâˆ—,h âˆˆ E.
We use the above â€œCauchy-Schwarzâ€� inequality quite often. Note that||F (x)||
âˆ—x
= ||h||
x
,where h := [F (x)]
âˆ’1
F (x), the Newton step at x for minimizing F.Theorem 2.3. Let F be a Ï‘-LHSCB for K. Then, for every x âˆˆ int(K), the open unit ellipsoidcentered at x and defined by the positive-definite Hessian F (x) is contained in the interior ofthe cone. That isE(x;F (x)) := z âˆˆ E : âŒ©F (x)(z âˆ’ x),z âˆ’ xâŒª < 1 âŠ‚ int(K).Moreover, for every z âˆˆ int(K) such that Î± := ||x âˆ’ z||
x
< 1, we have(1 âˆ’ Î±)2F (x)[h, h] â‰¤ F (z)[h, h] â‰¤1(1 âˆ’ Î±)2F (x)[h, h],for all h âˆˆ E.We use (as above) F (x)[h(1),h(2)] to denote the second derivative of F evaluated along thedirections h(1),h(2) âˆˆ E. We also use the notation âŒ©F (x)h(1),h(2)âŒª to denote the same quantity.In both expressions, F (x) is the Hessian of F. As we deal with the Hessians and other
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symmetric bilinear forms in the same space, we sometimes utilize the Lï¿½wner order, we writeA â‰¼ B to mean (B âˆ’ A) is a symmetric, bilinear positive semidefinite form. With theseclarifications, the above inequalities in the statement of the last theorem, can be equivalentlywritten as:(1 âˆ’ Î±)2F (x) â‰¼ F (z) â‰¼1(1 âˆ’ Î±)2F (x);we refer to the above relations as the Dikin ell  http://www.nuokui.com/pdf/aSKd6-rPJ6nI.html  ipsoid bound.For every x âˆˆ int(K) and every h âˆˆ Rn, defineÏƒx(h) :=1supt : (x âˆ’ th) âˆˆ K.We say that F has the long-step Hessian estimation property if1[1   tÏƒx(âˆ’h)]
2
F (x) â‰¼ F (x âˆ’ th) â‰¼1[1 âˆ’ tÏƒx(h)]
2
F (x),(2)for every x âˆˆ int(K), h âˆˆ Rn and t âˆˆ [0,1/Ïƒx(h)). Nesterov and Todd [30] proved that everyself-scaled barrier has this property. Gï¿½ler [6] extended this property to hyperbolic barriers.However, Nesterov proved (see Theorem 7.2 in [6]) that the relation (2) can hold for a self-concordant barrier and its conjugate only if K is a symmetric cone. Essentially equivalentproperties are expressed as the convexity of âŒ©âˆ’F (x),uâŒª, (in x) for every u âˆˆ K, or, as suffi-ciently smooth F having negative curvature: F (x)[u] â‰¼ 0 for every x âˆˆ int(K) and for everyu âˆˆ K.All of the properties listed in the next theorem can be derived directly from the logarithmichomogeneity property of F. We denote the kth derivative of F by DkF.Theorem 2.4. Let F be a Ï‘-LHSCB barrier for K.Then for all x âˆˆ int(K) and s âˆˆ int(Kâˆ—),F has the following properties:(1) For all k â‰¥ 1 integer and t > 0, if F is k times differentiable, then DkF(tx) = 1
tk DkF(x);
(2) âŒ©âˆ’F (x),xâŒª = Ï‘;(3) F (x)x = âˆ’F (x);(4) âŒ©F (x)x, xâŒª = Ï‘ = ||x||
2x
, âŒ©[F (x)]
âˆ’1
F (x),F (x)âŒª = Ï‘ = (||F (x)||
âˆ—x
)
2
;(5) F (x)[x] = âˆ’2F (x).The LHSCB F and its conjugate barrier Fâˆ— interact very nicely due to the elegant and powerfulanalytic structure imposed by the Legendre-Fenchel conjugacy:Theorem 2.5. Let F be a Ï‘-LHSCB barrier for K.Then for all x âˆˆ int(K) and s âˆˆ int(Kâˆ—),F and Fâˆ— satisfy the following properties:(1) Fâˆ—(âˆ’F (x)) = âˆ’Ï‘ âˆ’ F(x) and F(âˆ’Fâˆ—(s)) = âˆ’Ï‘ âˆ’ Fâˆ—(s);(2) âˆ’Fâˆ—(âˆ’F (x)) = x and âˆ’F (âˆ’Fâˆ—(s)) = s;
Page 9CONVEX OPTIMIZATION VIA PRIMAL-DUAL METRICS9
(3) Fâˆ— (âˆ’F (x)) = [F (x)]
âˆ’1
and F (âˆ’Fâˆ—(s)) = [Fâˆ— (s)]
âˆ’1
.Maps between primal space E and   http://www.nuokui.com/pdf/aSKd6-rPJ6nI.html  the dual space Eâˆ— play very fundamental roles. Among suchmaps, those which take int(K) to int(Kâˆ—) bijectively are particularly useful. One such mapis âˆ’F (ï¿½) (i.e., the duality mapping). In the special case of symmetric cones and self-scaledbarriers F, F (u) gives a linear isomorphism between int(K) and int(Kâˆ—) for every choice ofu âˆˆ int(K).Next, we define three sets of such linear transformations: T 2
0 , T 21 , T 22 [47]. We further require in
the definitions that these linear transformations, just like Hessians of self-concordant barriersabove, be also symmetric bilinear positive-definite forms. These sets are indexed based ontheir usage of information from the underlying self-concordant barrier functions (zeroth-orderinformation only, up to first-order information only, and up to second-order information only,respectively). We denote by S  (E,E) the set of symmetric bilinear positive-definite formsH[ï¿½,ï¿½] : E âŠ• E â†’ R. Note that such forms are also interpreted in this paper as linear mapsH : E â†’ Eâˆ—.Sometimes it is suitable to fix some inner product on E, and hence some linear isomorphismbetween E and Eâˆ—, and identify both E and Eâˆ— by Rn (n := dim(E)). We can then representevery T2 âˆˆ S  (Eâˆ—,Eâˆ—) by a symmetric positive-definite matrix over the reals. We use the samenotation T2 âˆˆ Sn
   for such representations. Then, we are able utilize the unique symmetric
positive-definite square-root, T âˆˆ Sn
   of T2. Since T2 : Eâˆ— â‰¡ Rn â†’ E â‰¡ Rn, one may
conceptually think of T : Eâˆ— â†’ Eâˆ—/2, as we eluded to in the Introduction. Such representationsare only necessary for our explicit discussions of the v-space constructions and for drawingcloser parallels to the Linear Programming special case. In fact, the algorithms can be stated,implemented and analysed without any need to directly computing T or even referring to it(we can fully operate with T2 and Tâˆ’2).Definition 2.6. For every pai  http://www.nuokui.com/pdf/aSKd6-rPJ6nI.html  r (x, s) âˆˆ int(K) âŠ• int(Kâˆ—), we defineT 2
0 (x, s) := T2 âˆˆ S  (Eâˆ—,Eâˆ—) : T2s = x.
In words, T 2
0 (x, s) is the set of all symmetric bilinear positive-definite forms which map s to x.
It may not be obvious, but this set is nonempty for every convex cone K and for every pairof points x and s in the interiors of respective cones. A proof of this fact was given, in thecontext of self-scaled barriers, by Nesterov and Todd [30] and two other proofs were given in[47] (Theorems 3.2, and 3.3). In fact, this set is convex and its dimension is â„¦(n2).For a given pair of x, s, let us defineï¿½(x, s) :=âŒ©s, xâŒªÏ‘.Note that if x and s are feasible in their respective problems, then Ï‘ï¿½(x, s) is their duality gap:Ï‘ï¿½(x, s) = âŒ©s, xâŒª = âŒ©c, xâŒªâˆ’âŒ©b, yâŒª
D
â‰¥ 0.
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We will often write simply ï¿½ for ï¿½(x, s). We immediately further abuse this notation andconsider for every ï¿½ > 0, the unique minimizers of the problem(Pï¿½) min 1
ï¿½
âŒ©c, xâŒª   F(x)Ax = b,(x âˆˆ int(K)).Under the assumptions that both problems (P) and (D) have Slater points, and that A issurjective, (Pï¿½) has a unique solution for every ï¿½ > 0. The necessary and sufficient conditionsfor optimality applied to (Pï¿½) yield that for every ï¿½ > 0, the unique solution x(ï¿½) of theminimization problem above make up the x-part of the unique solution (x(ï¿½),y(ï¿½),s(ï¿½)) to thesystem:Ax = b,x âˆˆ int(K)Aâˆ—y   s = c,s = âˆ’ï¿½F (x).Moreover, these solutions (x(ï¿½),y(ï¿½),s(ï¿½)) define a smooth path, called central path. Now wecan explain the latest abuse of notation; we have, for such points on the central path:âŒ©s(ï¿½),x(ï¿½)âŒª = Ï‘ï¿½.Therefore, our definition of ï¿½(x, s) is consistent with this usage of ï¿½ as well.To pass from the general set up of T2 to the Euclidean structure requiring set up of T, wemay use a â€œstaticâ€� Hessian to (for example, assume (x(0),s(0)) lies on the central path withparameter ï¿½  http://www.nuokui.com/pdf/aSKd6-rPJ6nI.html   = 1, and based on Fâˆ— (s(0)) = [F (x(0))]
âˆ’1
) fix an inner product for primal anddual spaces as in [34].Let T2 âˆˆ T 2
0 (x, s), and define T as above. Upon further defining v := Ts = Tâˆ’1x, we observe
Ï‘ï¿½ = âŒ©s, xâŒª = (s T)(Tâˆ’1x) = v v.These linear transformations allow generalizations of so-called v-space approaches to primal-dual interior-point methods from LP and SDP (see for instance, [17, 12, 10, 44, 24]) as wellas symmetric cone programming settings [30, 31, 45, 7] to the general convex optimizationsetting [45, 47]. What perhaps started as a convenience of notation as well as simplicity andelegance of analysis in the 1980â€™s, by now turned into a solid theoretical framework in whichdeep problems can be posed and solved whether they relate to the mathematical structures orare directly motivated by a family of algorithms.Note that the set T 2
0 does not use any information about the most difficult constraints of the
convex optimization problem. Indeed, in the worst-case, certain algorithms using only T 2
0 need
not even converge to an optimal solution (see [50]). Using first order information via F (x) andFâˆ—(s), we can focus on a smaller, but more interesting and useful subset of T 2
0 :
Page 11CONVEX OPTIMIZATION VIA PRIMAL-DUAL METRICS11
Definition 2.7. For every pair (x, s) âˆˆ int(K) âŠ• int(Kâˆ—), we defineT 2
1 (x, s) :=
H âˆˆ S  (Eâˆ—,Eâˆ—) : Hs = x, H[âˆ’F (x)]= âˆ’Fâˆ—(s).Just like T 2
0 , T 21 is also convex, nonempty and has dimension â„¦(n2). However, the nonemptiness
may be less obvious (for a proof, see [47], or Sections 3 and 4 of this paper).For convenience, we sometimes write Ëœx := Ëœx(s) := âˆ’Fâˆ—(s) and Ëœs := Ëœs(x) := âˆ’F (x). One canthink of Ëœx and Ëœs as the shadow iterates, as Ëœx âˆˆ int(K) and Ëœs âˆˆ int(Kâˆ—) and if (x, s) is a feasiblepair, then ï¿½Ëœx = x iff ï¿½Ëœs = s iff (x, s) lies on the central path. In this paper, s an  http://www.nuokui.com/pdf/aSKd6-rPJ6nI.html  d decoratedversions of it; Ëœs, Å¡, ï¿½s, etc. all belong to the dual s-space Eâˆ—; similarly, x and all of its decoratedversions belong to the x-space E.We also denote Ëœï¿½ := Ëœï¿½(x, s) := âŒ©Ëœs, ËœxâŒª/Ï‘. In this context, Ëœx is the primal shadow of the dualsolution s. Analogous to the definition of v, for every T obtained from a T2 âˆˆ T 2
1 (x, s), we can
now definew := T Ëœs = Tâˆ’1 Ëœx.Note that w w = Ï‘Ëœï¿½.Once we have such a transformation T, we can map the primal space using Tâˆ’1, and the dualspace using T to arrive at the data of the underlying (equivalent) scaled primal-dual pair. Wedefine ï¿½A := A(T(ï¿½)) and, we have( ï¿½P) inf (Tc) ï¿½xï¿½Aï¿½x= b,ï¿½xâˆˆ Tâˆ’1K,( ï¿½D) supâŒ©b, yâŒªDï¿½Aâˆ—y   ï¿½s = T c,ï¿½s âˆˆ TKâˆ—.Then the search directions for the scaled primal-dual pair ( ï¿½P) and ( ï¿½D) are (respectively)ï¿½dx := Tâˆ’1dx,ï¿½ds := Tds,where dx,ds denote the search directions in the original primal and dual spaces respectively.Lemma 2.8. (Nesterov and Todd [31], also see [47, 48]) For every (x, s) âˆˆ int(K) âŠ• int(Kâˆ—),âŒ©s, xâŒªÏ‘âŒ©F (x),Fâˆ—(s)âŒªÏ‘= ï¿½Ëœï¿½ â‰¥ 1.Equality holds above iff x = âˆ’ï¿½Fâˆ—(s) (and hence s = âˆ’ï¿½F (x)).Note that the equality above together with feasibility of x and s in their respective problems,define the primal-dual central path:(x(ï¿½),s(ï¿½)) : ï¿½ > 0.
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Further note that for each T âˆˆ T1, we can equivalently express the centrality condition asv = ï¿½w (of course, together with the requirement that the underlying x and s be feasible intheir respective problems). Primal and dual deviations from the central path are:Î´P := x âˆ’ ï¿½Ëœx and Î´D := s âˆ’ ï¿½Ëœs.In v-space, these deviations are both represented byÎ´v := v âˆ’ ï¿½w.Corollary 2.9. For every (x, s) âˆˆ int(K) âŠ• int(Kâˆ—),âŒ©s   ï¿½F (x),x   ï¿½Fâˆ—(s)âŒª = âŒ©Î´D,Î´P âŒª = ||Î´v||2
2
â‰¥ 0.The equality holds above iff x = âˆ’ï¿½Fâˆ—(s) (and hence s = âˆ’ï¿½F (x)).The above quantities have their counterpart, called the gradient proxi  http://www.nuokui.com/pdf/aSKd6-rPJ6nI.html  mity measure and denotedby Î³G(x, s), in the work of Nesterov and Todd [31]. In their paper, the corresponding measureisÎ³G(x, s) = Ï‘(ï¿½Ëœï¿½ âˆ’ 1) =||Î´v||2
2
ï¿½.Now, we consider the system of linear equations (we utilized Newtonâ€™s method, to follow thecentral path, approximately):ï¿½Aï¿½dx= 0(3)ï¿½Aâˆ—dy   ï¿½ds= 0.(4)ï¿½dx   ï¿½ds= âˆ’v   Î³ï¿½w,(5)where Î³ âˆˆ [0,1] is a centering parameter.Clearly, (ï¿½dx,ï¿½ds) solves the above linear system of equations iff ï¿½dx and ï¿½ds are the orthogonalprojections of (âˆ’v   Î³ï¿½w) onto the kernel of ï¿½A and the image of ï¿½Aâˆ— respectively. Given a pairof search directions, we definex(Î±) := x   Î±dx, s(Î±) := s   Î±ds.Using the above observations, the following result is immediate.Lemma 2.10. Let Î³ âˆˆ [0,1]. ThenâŒ©s(Î±),x(Î±)âŒª = [1 âˆ’ Î±(1 âˆ’ Î³)]âŒ©s, xâŒª.For every s âˆˆ int(Kâˆ—), we define the operator norm||M||s = sup
||u||sâ‰¤1
||Mu||âˆ—
s.
Then, by definition, ||Mu||âˆ—
s â‰¤ ||M||s||u||s. We will also utilize bilinear forms defined via ten-
sors. Just like the Hessians and bilinear forms T2 above, these new bilinear forms will also
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be interpreted as linear transformations between two spaces: For u âˆˆ E1, z âˆˆ E2, we defineu âŠ— z : Eâˆ—
2 â†’ E1 by
(u âŠ— z)h := âŒ©z,hâŒªu, âˆ€h âˆˆ Eâˆ—
2,
as well as a bilinear form, u âŠ— z : E2 âŠ• Eâˆ—
1 â†’ R. This bilinear form acts as
(u âŠ— z)[h1,h2] := âŒ©u, h1âŒªâŒ©z,h2âŒª, âˆ€h1 âˆˆ Eâˆ—
1,h2 âˆˆ Eâˆ—2.
Next, let us observe that for every pair h, u âˆˆ E, we have2(h âŠ— h âˆ’ u âŠ— u) = [(h âˆ’ u) âŠ— (h   u)]   [(h   u) âŠ— (h âˆ’ u)].We make considerable use of the following difference-of-squares bound for the operator normof the difference of two tensors:Lemma 2.11. Let h and u lie in E and s âˆˆ int(Kâˆ—). Then||(h âŠ— h) âˆ’ (u âŠ— u)||s â‰¤ ||h âˆ’ u||âˆ—
s||h   u||âˆ—s.
Proof. By the triangle inequality,2||(h âŠ— h) âˆ’ (u âŠ— u)||s= ||[(h âˆ’ u) âŠ— (h   u)]   [(h   u) âŠ— (h âˆ’ u)]|  http://www.nuokui.com/pdf/aSKd6-rPJ6nI.html  |
s
â‰¤ ||(h âˆ’ u) âŠ— (h   u)||
s
  ||(h   u) âŠ— (h âˆ’ u)||
s
.Now, we compute||(h âˆ’ u) âŠ— (h   u)||
s
=sup
||z||sâ‰¤1
||(h âˆ’ u)âŒ©z,h   uâŒª||
âˆ—s
=sup
||z||sâ‰¤1
âŒ©z,h   uâŒª ||h âˆ’ u||
âˆ—s
= ||h   u||
âˆ—s
||h âˆ’ u||
âˆ—s
;and similarly||(h   u) âŠ— (h âˆ’ u)||
s
= ||h   u||
âˆ—s
||h âˆ’ u||
âˆ—s
.Adding these together gives the advertised result.DThe next lemma is used many times in the following analysis.Lemma 2.12. Let s âˆˆ int(Kâˆ—), h âˆˆ Eâˆ— such that ||h||
s
< 1. Then,(1 âˆ’ ||h||s)
2 â‰¤
sup
uâˆˆEâˆ—:||u||sâ‰¤1
||Fâˆ— (s   h)u||
âˆ—s
â‰¤1(1 âˆ’ ||h||
s
)
2
.Proof. Let s and h be as in the statement of the lemma. Then Fâˆ— (s   h) â‰¼
1
(1âˆ’||h||s)2 Fâˆ— (s) bythe Dikin ellipsoid bound. Thus, the maximum eigenvalue of [Fâˆ— (s)]
âˆ’1/2
Fâˆ— (s   h)[Fâˆ— (s)]
âˆ’1/2
is bounded above by
1
(1âˆ’||h||s)2 . The square of this quantity is an upper bound on the largesteigenvalue of [Fâˆ— (s)]
âˆ’1/2
Fâˆ— (s   h)[Fâˆ— (s)]
âˆ’1
Fâˆ— (s   h)[Fâˆ— (s)]
âˆ’1/2
. Therefore, the supremum
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in the statement of the lemma is bounded above by
1
(1âˆ’||h||s)2as desired. The left-hand sideinequality can be proved similarly.DNow, we are ready to define the set of local primal-dual metrics which will utilize local second-order information from the underlying pair of self-concordant barriers. For each F and each pair(x, s) âˆˆ int(K) âŠ• int(Kâˆ—), consider the optimization problem with variables T2 âˆˆ S  (Eâˆ—,Eâˆ—)and Î¾ âˆˆ R:(PD)2infÎ¾T2s=x,T2 [âˆ’F (x)]= âˆ’Fâˆ—(s),
ï¿½Î¾[Ï‘(ï¿½Ëœï¿½âˆ’1) 1]
Fâˆ— (s) â‰¼T2â‰¼ Î¾[Ï‘(ï¿½Ëœï¿½âˆ’1) 1]
ï¿½
[F (x)]âˆ’1,Î¾ â‰¥ 1,T2 âˆˆ S  (Eâˆ—,Eâˆ—).This problem is indeed an SDP (a SemiDefinite Programming problem in variables T2 and Î¾).Let Î¾âˆ— be the optimum value  http://www.nuokui.com/pdf/aSKd6-rPJ6nI.html   of (PD)2.Definition 2.13. For every pair (x, s) âˆˆ int(K) âŠ• int(Kâˆ—), we defineT 2
2 (Î·;x, s) :=
ï£±ï£²ï£³H âˆˆ S  (Eâˆ—,Eâˆ—) :Hs = x,H [âˆ’F (x)] = âˆ’Fâˆ—(s),
ï¿½Î·Î¾âˆ—[Ï‘(ï¿½Ëœï¿½âˆ’1) 1]
Fâˆ— (s) â‰¼ H â‰¼
Î·Î¾âˆ—[Ï‘(ï¿½Ëœï¿½âˆ’1) 1]ï¿½
[F (x)]âˆ’1ï£¼ï£½ï£¾,for Î· â‰¥ 1.Sometimes we find it convenient to refer to T directly. So, we define T0, T1, T2 as the set ofT âˆˆ Sn
   whose square, T2 lie in T 20 , T 21 , T 22 respectively.
When the underlying cone K is symmetric, we have (P) and (D) as symmetric cone pro-gramming problems. Symmetric cones (are homogeneous and self-dual, and) admit self-scaledbarriers. For such problems, there is a very small upper bound on Î¾âˆ— for every pair of interior-points. The following theorem follows mainly from Theorem 5.2 and Corollary 4.1 of Nesterovand Todd [30].Theorem 2.14. (see [47]) Let K be a symmetric cone and F be a self-scaled barrier for K.Then, for every (x, s) âˆˆ int(K) âŠ• int(Kâˆ—), Î¾âˆ— â‰¤ 4/3.Being able to establish a nice upper bound on Î¾âˆ— for all iterates, and then, for some smallÎ· â‰¥ 1, finding an efficient way of computing an element of T 2
2 (Î·;x, s), directly yield primal-
dual interior-point algorithms with good properties. In particular, if the upper bounds onÎ¾âˆ— and Î· are both O(1), then such results directly yield primal-dual interior-point algorithmswith iteration complexity bound O(âˆšÏ‘ln (1/Ïµ)); see, [47]. Next, we consider various ways ofconstructing good symmetric positive-definite bilinear forms in T 2
1 and T 22 .
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3. Primal-dual metrics via Hessian integrationIn the special case where cone K is symmetric and F is a self-scaled barrier for K, Nesterov andTodd [30, 31] identified a specific element of the sets T0, T1 and T2 in terms of the Hessians ofcertain scaling points (i.e., for every pair (x, s), there exists w âˆˆ int(Kâˆ—) such that T2 = Fâˆ— (w)).There is also an  http://www.nuokui.com/pdf/aSKd6-rPJ6nI.html   explicit linear algebraic formula which expresses the Hessian at w in terms of theHessians of F and the conjugate barrier Fâˆ— at x and s respectively. The next theorem achievesan analogous goal in the fully general case of an arbitrary convex cone K and an arbitrary self-concordant barrier F for K by expressing a primal-dual scaling in T 2
1 as an integral of Hessians
along the line segment joining the dual iterate to the dual shadow of the primal iterate. Laterin Section 5, we prove that beyond symmetric cones and self-scaled barriers, one should notexpect in general to find, for every pair of primal dual interior points (x, s), a w âˆˆ int(Kâˆ—) suchthat Fâˆ— (w) âˆˆ T 2
1 (x, s). Perhaps surprisingly, we prove next that â€œan average of the Hessiansâ€�
works!Theorem 3.1. Let F be a LHSCB for K and (x, s) âˆˆ int(K) âŠ• int(Kâˆ—). Then, the lineartransformationT2
D := ï¿½
âˆ« 1
0
Fâˆ— (s âˆ’ tÎ´D)dtmaps s to x, and maps Ëœs to Ëœx, and T2
D[ï¿½,ï¿½] is a symmetric positive-definite bilinear form.
Therefore, T2
D is in T 21 (x, s).
Proof. Using the fundamental theorem of calculus (for the second equation below) followed bythe property âˆ’Fâˆ— (âˆ’F (x)) = x (for the third equation below), we obtainT2
DÎ´D = ï¿½
âˆ« 1
0
Fâˆ— (s âˆ’ tÎ´D)Î´Ddt = ï¿½[âˆ’Fâˆ—(s âˆ’ Î´D)   Fâˆ—(s)] = ï¿½(x/ï¿½ âˆ’ Ëœx) = Î´P .We next compute, using the substitution Ëœt= 1/t,T2
Ds = ï¿½
âˆ« 1
0
Fâˆ— (s âˆ’ tÎ´D)sdt= ï¿½âˆ« 1
0
1t2Fâˆ— (s/t âˆ’ Î´D)sdt= ï¿½âˆ« âˆž
1
Fâˆ— (Ëœts âˆ’ Î´D)sdËœt= âˆ’ï¿½Fâˆ—(s âˆ’ Î´D) = x.Further, T2
D is the mean of some symmetric positive-definite bilinear forms, so T2D itself is a
symmetric positive-definite bilinear form.DWe call this scaling operator the dual integral scaling. Note that the above theorem holdsunder weaker assumptions (we only used the facts that F is logarithmically homogeneous and
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F,   http://www.nuokui.com/pdf/aSKd6-rPJ6nI.html  Fâˆ— are Legendre-type functions in the sense of Rockafellar [41]). The dual integral scaling isexpected to inherit many of the nice properties of the Hessians. Thus, if Fâˆ— is well-behaved,then one can prove nice bounds on the deviation of dual integral scaling from the dual Hessianat s and ï¿½Ëœs:Theorem 3.2. If Ïƒ < 1 is such that, for any t âˆˆ [0,1],(1 âˆ’ tÏƒ)2Fâˆ— (s) â‰¼ Fâˆ— (s âˆ’ tÎ´D) â‰¼1(1 âˆ’ tÏƒ)2Fâˆ— (s),then(1 âˆ’ Ïƒ)ï¿½Fâˆ— (s) â‰¼ T2
D â‰¼
11 âˆ’ Ïƒï¿½Fâˆ— (s).Proof. This follows directly from the definition of T2
D.
DInterestingly, the dual integral scaling (the mean of Hessians along the line segment joining sand ï¿½Ëœs) is not as â€œcanonicalâ€� as the Nesterovâ€“Todd scaling (the geodesic mean of the Hessiansjoining the same two points in the interior of Kâˆ—) in terms of primal-dual symmetry properties.For the remainder of this section, we elaborate on this and related issues. Also, in Section 8when we specialize on Hyperbolicity Cone Programming problems, we show that the integralscaling can have advantages (when one of the primal and dual problems is more tractable ornicer for the approach at hand, as a benefit of breaking this primal-dual symmetry well, andproperties like those given by Theorem 3.2).Notice that the dual integral scalingâˆ« 1
0
ï¿½Fâˆ— (ts   (1 âˆ’ t)ï¿½Ëœs)dtand the primal integral scalingT2
P :=
(âˆ« 1
0
ï¿½F (tx   (1 âˆ’ t)ï¿½Ëœx)dt)âˆ’1are both scalings that map s to x and Ëœs to Ëœx. These are not in general the same, though theydo coincide with the usual scaling Diag(x) [Diag(s)]
âˆ’1
in the case of Linear Programming.Example 3.3. (A comparison of primal-dual local metrics for the positive semidefinite cone)We work out the integral scaling for the positive semidefinite cone Sn
 . If X is the primal iterate
and ËœX is the primal shadow of the dual iterate, then we see that(T2
P
)
âˆ’1
[H, H] = ï¿½âˆ« 1
0
âŒ©(tX   (1 âˆ’ t)ï¿½ËœX)âˆ’1H(t  http://www.nuokui.com/pdf/aSKd6-rPJ6nI.html  X   (1 âˆ’ t)ï¿½ËœX)âˆ’1,HâŒªdt.One can make this slightly more explicit. There always exists a U âˆˆ GL(n) such that UXU =I and Uï¿½ËœXU is diagonal; one can compose a Q that orthogonally diagonalises X, an S that
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scales Q XQ to the identity matrix, and a Q that orthogonally diagonalises SQ ï¿½ËœXQS. SayUï¿½ËœXU = D. Then we can computeT2
D[UHU ,UHU ] = ï¿½
âˆ« 1
0
âŒ©(tI   (1 âˆ’ t)D)âˆ’1H(tI   (1 âˆ’ t)D)âˆ’1,HâŒªdt.In particular, if H is Eij, we haveT2
D[UEijU ,UEijU ] = ï¿½
âˆ« 1
0
(t   (1 âˆ’ t)Di)âˆ’1(t   (1 âˆ’ t)Dj)âˆ’1dt = ï¿½lnDj âˆ’ lnDiDj âˆ’ Di.Special attention needs to be given to the case when Di = Dj; here, the integral evaluates toï¿½/Di.If H = Eij   Ekl (with (i, j) = (k, l)), we have T2
D[U(Eij   Ekl)U ,U(Eij   Ekl)U ] given by
ï¿½âˆ« 1
0
(t   (1 âˆ’ t)Di)âˆ’1(t   (1 âˆ’ t)Dj)âˆ’1   (t   (1 âˆ’ t)Dk)âˆ’1(t   (1 âˆ’ t)Dl)âˆ’1dt.This is the sum of T2
D[UEijU ,UEijU ] with T2D[UEklU ,UEklU ], meaning that
T2
D[UEijU ,UEklU ] = Î´ikÎ´jlT2D[UEijU ,UEijU ].
Put another way, the operator CU T2
DCU is diagonal where CU is the conjugation operator
given by CU (Z) = UZU . For every nonsingular U, the map CU preserves operator geometricmeans; that is,UA1/2 (Aâˆ’1/2BAâˆ’1/2)1/2A1/2U= (UAU )1/2 ((UAU )âˆ’1/2UBU (UAU )âˆ’1/2)1/2(UAU )1/2.One can show this as follows: The geometric mean of X â‰» 0 and Y â‰» 0 is the unique positive-definite G := X1/2 (X1/2Y âˆ’1X1/2)
âˆ’1/2
X1/2 such that GXâˆ’1G = Y . Taking H = UGU , wehaveHUâˆ’Xâˆ’1Uâˆ’1H = UGU Uâˆ’Xâˆ’1Uâˆ’1UGU = UGXâˆ’1GU = UYU .Interestingly, Molnï¿½r [16] proved that every linear automorphism of the semidefinite cone over acomplex Hilbert space that preserves geometric means is a conjugation operator. The converse isalso true, since the set of automorphisms of Sn
  is the set of conjugations given by the nonsingular
U (see a discussion in [46] of Gï¿½ler  http://www.nuokui.com/pdf/aSKd6-rPJ6nI.html  â€™s proof utilizing the proof technique of Waterhouse [49]),and as we observed above, it is easy to verify that the conjugation operator preserves operatorgeometric means. Thus, we can make a natural comparison with the Nesterovâ€“Todd scalinggiven byN[H, H] = âŒ©(V D
1/2
V )âˆ’1H(V D
1/2
V )âˆ’1,HâŒª,
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where V D V is the spectral decomposition of operator geometric mean of X and ï¿½ËœX. NoticethatN[V EijV ,VEijV ] = âŒ©D
âˆ’1/2
EijD
âˆ’1/2
,EijâŒª =1âˆšDiDjand that N is similarly diagonal with respect to that basis. (The conjugation CU NCU doesnot in general result in a diagonal matrix, so we need to take this different V instead in orderto diagonalise N.) Notice thatN[UEijU ,UEijU ] = ei U GUeiej U GUejwhatever U is. Thus, when we form the matrix whose ij entry is N[UEijU ,UEijU ], wealways obtain a rank-one matrix. However, such a matrix formed from the integral scaling T2
D
can have full rank. We proceed with an example. Consider D = (Ïµ, Ïµ2,...,Ïµn). Notice thatlnDi âˆ’lnDj = (iâˆ’j) lnÏµ, while Di âˆ’Dj = Ïµi âˆ’Ïµj. Thus, the (i, j) entry of this matrix is on theorder of Ïµâˆ’ min(i,j). For sufficiently small Ïµ, then, the determinant of this matrix is dominatedby the product along the diagonal, which is positiveâ€”it follows that this matrix is nonsingular.4. Local primal-dual metrics expressed as low rank updatesIt may be impractical in many cases to evaluate the integral scaling from Section 2 exactlyor to high enough accuracy. Due to this, or perhaps due to numerical instabilities arising incomputations, we may have to make do with an approximation H that does not necessarilysatisfy the equations Hs = x and HËœs = Ëœx.The second author [47] constructed the following low-rank update which â€œfixesâ€� such problemsencountered by any symmetric, positive-definite H:T2
H
:= H   a1x âŠ— x   g1Hs âŠ— Hs   Ëœa1 Ëœx âŠ— Ëœx   Ëœg1  http://www.nuokui.com/pdf/aSKd6-rPJ6nI.html  HËœsâŠ— HËœs  a2 [(x âŠ— Ëœx)   (Ëœx âŠ— x)](6) g2 [(Hs âŠ— HËœs) (HËœsâŠ— Hs)],wherea1 =Ëœï¿½Ï‘(ï¿½Ëœï¿½ âˆ’ 1), Ëœa1 =ï¿½Ï‘(ï¿½Ëœï¿½ âˆ’ 1),a2 =âˆ’1Ï‘(ï¿½Ëœï¿½ âˆ’ 1),g1 =H[Ëœs, Ëœs]H[s, s]H[Ëœs, Ëœs] âˆ’ (H[Ëœs, s])
2
, Ëœg1 =H[s, s]H[s, s]H[Ëœs, Ëœs] âˆ’ (H[Ëœs, s])
2
,g2 =H[s, Ëœs]H[s, s]H[Ëœs, Ëœs] âˆ’ (H[Ëœs, s])
2
.The second author [47] proved that, as long as H is positive-definite, T2
H is positive-definite,
maps s to x, and maps Ëœs to Ëœx.As written, Equation (6) is somewhat unwieldy for purposes of analysis. It is not immediatelyobvious that, in the case that the pair (x, s) satisfy the centrality condition x = ï¿½Ëœx (or,equivalently, ï¿½Ëœï¿½ = 1), the formula collapses to a rank-two update. (Indeed, it has a singularitythere.) We prove that the above given complicated operator has an equivalent form as two,simple, consecutive updates due to the special structure of our set-up:
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Theorem 4.1. Let x, Ëœx âˆˆ E and s, Ëœs âˆˆ Eâˆ— satisfy the following conditions (under the definitionsÎ´P := x âˆ’ ï¿½Ëœx and Î´D := s âˆ’ ï¿½Ëœs):â€¢ 0 < âŒ©Ëœs, xâŒª = âŒ©s, ËœxâŒª =: Ï‘â€¢ 0 < âŒ©s, xâŒª =: Ï‘ï¿½â€¢ 0 < âŒ©Ëœs, ËœxâŒª =: Ï‘Ëœï¿½â€¢ âŒ©Î´D,Î´P âŒª > 0.Further let H âˆˆ S  (Eâˆ—,Eâˆ—). Then, H2 in the following formula is a symmetric, positive-definite bilinear form and it maps s to x, and maps Ëœs to Ëœx:H1:= H  1âŒ©s, xâŒªx âŠ— x âˆ’1âŒ©s, HsâŒªHs âŠ— Hs(7)H2:= H1  1âŒ©Î´D,Î´P âŒªÎ´P âŠ— Î´P âˆ’1âŒ©Î´D,H1Î´DâŒªH1Î´D âŠ— H1Î´D.Proof. Notice that H1s = Hs   x âˆ’ Hs = x. Notice further that âŒ©s, Î´P âŒª = âŒ©Î´D,xâŒª = 0 byexpanding the dual pairing conditions, so H2s = H1s. Thus, H2 maps s to x. Next, note thatH2Î´D = H1Î´D  Î´P âˆ’H1Î´D = Î´P . Thus, H2 also maps Î´D to Î´P . Hence, H2 maps Ëœs to Ëœx. ClearlyH2 is a linear combination of symmetric bilinear forms and hence itself is a symmetric bilinearform. We recall from the theory of quasi-Newton updates (see for instance Lemma 9.2.1 in [4])that the â€œcurvature conditionâ€� âŒ©s, xâŒª > 0 is necessa  http://www.nuokui.com/pdf/aSKd6-rPJ6nI.html  ry and sufficient to guarantee that H1 ispositive-definite, and, given that H1 is positive-definite, the curvature condition âŒ©Î´D,Î´P âŒª > 0is necessary and sufficient for H2 to be positive-definite. Therefore, H2 is positive-definite aswell.DNote that the positivity of the scalar products âŒ©s, xâŒª and âŒ©Î´D,Î´P âŒª, together with the orthogo-nality conditions âŒ©s, Î´P âŒª = âŒ©Î´D,xâŒª = 0 suffice for the above theorem to hold. Thus, there maybe a potential use of these formulae in classical quasi-Newton approaches. Such considerationsare left for future work.We remark that we can apply the above formulas after switching x and s and then invertingthe resulting T2 to obtain the following low-rank updates (under the same conditions):Theorem 4.2. Let H, x, Ëœx, s, and Ëœs be as in Theorem 4.1. Then H2 in the following formulais symmetric, positive-definite, maps s to x, and maps Ëœs to Ëœx:(8)H1 :=(I âˆ’x âŠ— sâŒ©s, xâŒª)H(I âˆ’s âŠ— xâŒ©s, xâŒª) x âŠ— xâŒ©s, xâŒªH2 :=(I âˆ’Î´P âŠ— Î´DâŒ©Î´D,Î´P âŒª)H1(I âˆ’Î´D âŠ— Î´PâŒ©Î´D,Î´P âŒª) Î´P âŠ— Î´PâŒ©Î´D,Î´P âŒª.
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Proof. We again see that H1s = x and H2Î´D = Î´P by correctness of the BFGS/DFP update.We computeH2s =(I âˆ’Î´P âŠ— Î´DâŒ©Î´D,Î´P âŒª)H1(I âˆ’Î´D âŠ— Î´PâŒ©Î´D,Î´P âŒª)s  Î´P âŠ— Î´PâŒ©Î´D,Î´P âŒªs =(I âˆ’Î´P âŠ— Î´DâŒ©Î´D,Î´P âŒª)x  0= x.It is easy to verify that both H1 and H2 are symmetric bilinear forms. H1 is positive-definitebecause the curvature condition âŒ©s, xâŒª > 0 is satisfied. H2 is positive-definite because thecurvature condition âŒ©Î´D,Î´P âŒª > 0 is satisfied.DDue to the variational interpretations of quasi-Newton update formulae, we have the corre-sponding interpretations in our set-up (i.e., H1 is the closestâ€”minimum distanceâ€”symmetricbilinear form to H satisfying H1s = x; similarly for H2 and H1). Moreover, as in [47], the aboveformulae can be used in convex combinations (analogous to Broydenâ€™s convex class in the clas-sical quasi-Newton context  http://www.nuokui.com/pdf/aSKd6-rPJ6nI.html  ) due to convexity of T1. Of course, we may also use the formula forH1 in Theorem 4.1 together with the formula for H2 in Theorem 4.2, etc. In Appendix B, wewill look at these properties more deeply from a strict primal-dual symmetry viewpoint.5. Primal-dual Hessian local metrics based on a single scaling pointIn this section, we ask and partially answer the following question: For which Ï‘-LHSCBs Fâˆ—does there exist a unique scaling point w âˆˆ int(Kâˆ—) such that Fâˆ— (w) âˆˆ T 2
1 (x, s) for every
x âˆˆ int(K) and s âˆˆ int(Kâˆ—)?Note that, on the one hand, for every Ï‘-LHSCB Fâˆ—, there exists a scaling point w âˆˆ int(Kâˆ—)such that Fâˆ— (w) âˆˆ T 2
0 (x, s) for every x âˆˆ int(K) and s âˆˆ int(Kâˆ—) (as it was already proved by
Nesterov and Todd [30]; see [47], Theorem 3.1). On the other hand, the Nesterovâ€“Todd scalingpoint given by the geodesic mean of s and âˆ’F (x) provides an example of such a w in thesymmetric cone case (in this special case, Fâˆ— (w) âˆˆ T 2
1 (x, s)). We show that this property does
not generalise to slices of a symmetric cone that are not themselves symmetric cones. Everysymmetric cone is a slice of a positive semidefinite cone. Therefore, for the sake of simplicityof notation we will stick with the slices of positive semidefinite cones in the following.Lemma 5.1. Let L be a linear subspace of Sn that contains I but is not closed under matrixsquaring. Then there exists a B âˆˆ L such that TrB = 0 and B2 âˆˆ L.Proof. Select a C such that C2 âˆˆ L. Let t := TrC/n and B := C âˆ’ tI. Then, TrB = 0 andB2 = C2 âˆ’ 2tC   t2I. The latter two terms of this expansion lie in L while C2 does not, soB2 âˆˆ L.DGiven a linear subspace L, let Î L denote the orthogonal projection onto L.Proposition 5.2. Let L be a linear subspace of Sn that contains I but is not closed under matrixsquaring. Choose the barrier F(X) = âˆ’ln detX for the cone K := Sn
  âˆ©L. (The dual cone of K
Page 21CONVEX OPTIMI  http://www.nuokui.com/pdf/aSKd6-rPJ6nI.html  ZATION VIA PRIMAL-DUAL METRICS21
is Kâˆ— = S âˆˆ L : âˆ€X âˆˆ K,Tr(SX) â‰¥ 0 = Î L(S
n ).) There exist X âˆˆ int(K) and S âˆˆ int(Kâˆ—)
such that, for all W âˆˆ int(K), either F (W)[X] = S or F (W)[âˆ’Fâˆ—(S)] = âˆ’F (X).Proof. For the claim about Kâˆ—, note thatKâˆ— = (Sn
  âˆ© L)âˆ—
âˆ© L = (Sn
    LâŠ¥) âˆ© L = Î L
(S
n ),
where the second equation above uses the facts that L âˆ© Sn
   = âˆ…, (Sn 
)
âˆ—
= Sn
  and Lâˆ— = LâŠ¥.
Assume for the purpose of contradiction that there are n and L such that, for every choiceof X âˆˆ int(K) and S âˆˆ int(Kâˆ—), there exists a W âˆˆ int(K) for which F (W)[X] = S andF (W)[âˆ’Fâˆ—(S)] = âˆ’F (X).For Z âˆˆ int(K), we compute (e.g., by using Taylorâ€™s formula for F(x   td), for x âˆˆ int(K),d âˆˆ L)F (Z) = âˆ’Î L(Zâˆ’1)andF (Z)[H] = lim
hâ†’0 
âˆ’1hÎ L((Z   hH)âˆ’1 âˆ’ Zâˆ’1)=Î L(Zâˆ’1HZâˆ’1).Select B âˆˆ L such that TrB = 0 and B2 âˆˆ L. Let S := X := I   ÏµB; we shall choose Ïµ > 0later. (For sufficiently small Ïµ, X lies in the interior of K and S in the interior of Kâˆ—.) Noticethat this choice of S and X implies that S = F (W)[X]=Î L(Wâˆ’1XWâˆ’1).Next, we check that W = I is the only solution to S = F (W)[X]. Suppose W is such thatS = F (W)[X]. Consider the problemmin Tr(Zâˆ’1X)subject toTr(ZX) â‰¤ Tr(WX)Z âˆˆ LZ â‰½ 0.Notice that the objective is strictly convex (this is indeed related to the fact that the long-stepHessian estimation property holds for âˆ’ln det(ï¿½)) and that the feasible region is nonempty,compact and convex (since X is positive-definite). Thus this problem has a unique optimalsolution. This optimal solution does not lie in the boundary of the positive semidefinite conesince the objective is  âˆž there and finite elsewhere. Thus, we may drop the constraint Z â‰½ 0.Z := W/2 is a feasible solution satisfying the positive semidefiniteness constraint and the linearinequality strictly, so Slaterâ€™s condition holds. Notice that the gradient of the objective isâˆ’  http://www.nuokui.com/pdf/aSKd6-rPJ6nI.html  Zâˆ’1XZâˆ’1.By the Karush-Kuhn-Tucker theorem applied to the problem without the explicit constraintZ succeq0, every point Z for which Tr(ZX) = Tr(WX) and there exists a Î» â‰¥ 0 and lâŠ¥ âˆˆ LâŠ¥such that Zâˆ’1XZâˆ’1 âˆ’ Î»X   lâŠ¥ = 0 is optimal. Note that Z = W is a solution with Î» = 1.Note that Z := Tr(WX)I/TrX is also a solution with Î» = [Tr(X)/Tr(WX)]
2
. Thus W mustbe a scalar multiple of I; since Î L(Wâˆ’1XWâˆ’1) = X, that scalar must be 1.
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Define ËœX := âˆ’Fâˆ—(S). Then, we must have F (W)[ ËœX] = âˆ’F (X); ËœX = Î L(Xâˆ’1) = Xâˆ’1 âˆ’ Pfor some P âˆˆ LâŠ¥. Observe that, for sufficiently small Ïµ,Xâˆ’1 = I âˆ’ ÏµB   Ïµ2B2   O(Ïµ3).Both I and B lie in L, soP = Î LâŠ¥ (Ïµ2B2)   O(Ïµ3).We compute, for sufficiently small Ïµ,n = TrS = Tr[âˆ’F ( ËœX)]= Tr[(Xâˆ’1 âˆ’ P)âˆ’1] = Tr[X   XPX   XPXPX   O(Ïµ6)]= Tr[I   ÏµB   P   ÏµBP   ÏµP B   Ïµ2BPB   P2   O(Ïµ5)]= n  0 0 0 0  Ïµ2 Tr(B2P)   Tr(P2)   O(Ïµ5).For the last equation above, we used the fact that Tr(P) = 0 (since P âˆˆ LâŠ¥ and I âˆˆ L).Noting that P = Î LâŠ¥ (Ïµ2B2)   O (Ïµ3), we see that Ïµ2 Tr(B2P) = Tr(P2), which is the squaredFrobenius norm of P. By our choice of B, this is positive. Thus, for sufficiently small Ïµ,TrX = TrS = Tr[âˆ’F ( ËœX)]> TrX, a contradiction.DThere is a five-dimensional semidefinite cone slice where a T1 scaling defined by a single pointdoes not exist for all x and s, namely the cone of symmetric, positive semidefinite matriceswith the sparsity patternï£«ï£âˆ— âˆ— âˆ—âˆ— âˆ— 0âˆ— 0 âˆ—ï£¶ï£¸.This cone (described above as a slice of 3-by-3 positive semidefinite cone) is also known as theVinberg cone. (Here we are working with its SDP representation). It is the smallest-dimensionalhomogeneous cone that is not self-dual, whence not a symmetric cone. This particular subspaceL contains I, and it is not closed under matrix squaring.Let us note that if L is a linear subspace of Sn that contains I and is closed under matrixsquaring, thenâˆ€U, V   http://www.nuokui.com/pdf/aSKd6-rPJ6nI.html  âˆˆ L, UV   V U = (U   V )2 âˆ’ U2 âˆ’ V 2 âˆˆ L.Moreover, since for every pair U, V âˆˆ L, the equationU (U2V   V U2)   (U2V   V U2)U = U2 (UV   V U) (UV   V U)U2is self-evident, we have an Euclidean Jordan algebra over L. Hence, (Sn
  âˆ© L) is an SDP
representation of a symmetric cone and indeed the function âˆ’ln det(ï¿½) : int(K) â†’ R is a self-scaled barrier for (Sn
  âˆ© L). Therefore, Proposition 5.2 proves that among all SDP-representable
cones (as a slice of Sn
 ), symmetric cones are the only ones for which
Fâˆ— (w) : w âˆˆ int(Kâˆ—)âˆ©T 2
1 (x, s) = âˆ…, âˆ€(x, s) âˆˆ int(K) âŠ• int(Kâˆ—),
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where F(X) := âˆ’ln det(X) (over the representing cone Sn
 ).
The proof technique of Proposition 5.2 is more generally applicable. As a result, a more generaland sharper characterization of the underlying behaviour is possible. This will be addressed,in detail, in future work.6. The norm of the low-rank updates near the central pathWe know that if we can compute T2 âˆˆ T 2
2 (Î·;x, s) efficiently, with ensuring Î¾âˆ— = O(1) and
Î· = O(1) for all iterates, then we will have one of the most important ingredients of a generalfamily of primal-dual interior-point algorithms with iteration complexity O(âˆšÏ‘ln(1/Ïµ)).Up to this point, we have seen many ways of constructing T2 âˆˆ T 2
1 (x, s). However, we also
discovered that we cannot expect to have a z âˆˆ int(Kâˆ—) such that Fâˆ— (z) âˆˆ T 2
1 (x, s), in general.
We will later present and analyse an algorithm for convex programming based on Mizuno,Todd, and Yeâ€™s predictor-corrector approach [15]. We will first assume explicit access to oraclescomputing a Ï‘-self-concordant primal barrier F for the primal cone and the conjugate barrierFâˆ— for the dual cone. We will argue later that the algorithms can be modified to work withoutan explicit Fâˆ— oracle.These oracles may be expe  http://www.nuokui.com/pdf/aSKd6-rPJ6nI.html  nsive; it may be unreasonable (or simply unnecessary) to try tocompute the dual integral scaling directly to high precision at every iteration. We thus considercomputing an approximation H to T2
D and then using a low-rank update to H to get a scaling
in T2
H âˆˆ T1(x, s). Specifically, we approximate the operator integral by evaluating it at the
midpoint of the line segment joining s and ï¿½Ëœs, corresponding to the two extremes of the set ofsymmetric bilinear positive-definite forms Fâˆ— (s âˆ’ tÎ´D) : t âˆˆ [0,1]. Then, we use the low-rankupdates of Section 4 to restore membership in T 2
1 (x, s).
DefineÅ¡ :=s   ï¿½Ëœs2and H := ï¿½Fâˆ— (Å¡),and take H1 and T2
H := H2 as in (7).
Our analysis hinges on the resulting scaling (local metric T2
H) being close to ï¿½Fâˆ— (s) and
[ï¿½F (x)]
âˆ’1
(in the sense of Definition 2.13) in every iteration of the algorithm. We there-fore devote the remainder of this section to computing bounds, somehow dependent on theerror in approximating T2
D by H, of the additional error introduced by the low-rank updates.
We will prove in this section that for every pair of interior points (x, s) âˆˆ int(K) âŠ• int(Kâˆ—)for which x is close to ï¿½Ëœx, and hence s is close to ï¿½Ëœs (in the sense that e.g., ||Î´D||
s
< 1/64),Î¾âˆ— is O(1) (in fact, less than 4/3), and T2
H is a 4/3-approximate solution to the SDP defining
T 2
2 (1;x, s). We made a particular choice of 1/64 for the neighbourhood parameter; indeed, a
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continuous parametrization of the following analysis with respect to the neighbourhood param-eter is possible (and implicit). More importantly, we chose a measure of proximity in the dualspace for the analysis (rather than, for example, choosing a primal-dual symmetric measureof proximity). For the order of the iteration bounds this does not seem to make a d  http://www.nuokui.com/pdf/aSKd6-rPJ6nI.html  ifference,moreover, we wanted state at least some of the analysis in a way that would be useful in imple-mentations of the algorithms in this framework that break the symmetry in favor of the dualproblem.For x âˆˆ intK, define ||h||
K,x
to be the smallest positive Î» such that x   h/Î» and x âˆ’ h/Î» bothlie in K. Then,||h||
K,x
= minÏƒx(h),Ïƒx(âˆ’h).One can check that ||ï¿½||
K,x
is a norm. Let ||h||
âˆ—K,xbe its dual norm. If H : Eâˆ— âŠ• Eâˆ— â†’ R is a
symmetric bilinear form, define||H||
K,x
:= max
||u||âˆ—
K,xâ‰¤1
max
||l||âˆ—
K,xâ‰¤1
H[u, l];this is the operator norm induced by the norm ||ï¿½||
K,x
.Good bounds on the difference between two vectors in ||ï¿½||
K,x
imply some very useful conicinequalities:Proposition 6.1. If ||u âˆ’ l||
K,l
â‰¤ Î´ < 1, then there are x and y in K such that u = (1 âˆ’ Î´)l  x = (1   Î´)l âˆ’ y.Proof. Let s âˆˆ Kâˆ—. Then âŒ©s, lâŒª â‰¥ 0 and âŒ©s, l ï¿½ (u âˆ’ l)/Î´âŒª â‰¥ 0. Thus âŒ©s,(Î´ âˆ’ 1)l   uâŒª â‰¥ 0 andâŒ©s,(1   Î´)l âˆ’ uâŒª â‰¥ 0. This is true for every s âˆˆ Kâˆ—, so (Î´ âˆ’ 1)l   u and (1   Î´)l âˆ’ u both lie inK, as desired.DThe operator norm still behaves as expected on rank-one matrices:Proposition 6.2. Let u, l âˆˆ E. Then the operator norm of the bilinear form u âŠ— l is||u âŠ— l||
K,x
= ||u||
K,x
||l||
K,x
.Proof. We use the definitions, to deduce:||u âŠ— l||
K,x
= max
||y||âˆ—
K,xâ‰¤1
max
||z||âˆ—
K,xâ‰¤1
âŒ©u, yâŒªâŒ©l, zâŒª =(max
||y||âˆ—
K,xâ‰¤1
âŒ©u, yâŒª)(max
||z||âˆ—
K,xâ‰¤1
âŒ©l, zâŒª)= ||u||
K,x
||l||
K,x
.DThe difference-of-squares bound also still holds:Proposition 6.3. Let u, l âˆˆ E. Then||(u âŠ— u) âˆ’ (l âŠ— l)||
K,x
â‰¤ ||u âˆ’ l||
K,x
||u   l||
K,x
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Proof. We apply the definitions:(u âŠ— u) âˆ’ (l âŠ— l) =12([(u âˆ’ l) âŠ— (u   l)]   [(u   l  http://www.nuokui.com/pdf/aSKd6-rPJ6nI.html  ) âŠ— (u âˆ’ l)]).Now, we apply the triangle inequality and the previous proposition.DWe can control the ||ï¿½||
K,x
norm of the quasi-Newton updates from Section 4 in terms of the||ï¿½||
K,x
norm of the correction to be made. The following theorem makes special use of the factthat s lies in Kâˆ— and x in K to get a strong bound:Theorem 6.4. Let x âˆˆ int(K) and s âˆˆ int(Kâˆ—). Let H : Eâˆ— âŠ• Eâˆ— â†’ R be a symmetric bilinearpositive-definite form. Suppose ||Hs âˆ’ x||
K,x
â‰¤ Ïµ1 < 1. Then,âˆ£âˆ£âˆ£âˆ£âˆ£âˆ£âˆ£âˆ£Hs âŠ— HsâŒ©s, HsâŒªâˆ’x âŠ— xâŒ©s, xâŒªâˆ£âˆ£âˆ£âˆ£âˆ£âˆ£âˆ£âˆ£K,xâ‰¤ Ïµ13   Ïµ11 âˆ’ Ïµ1.Proof. By the triangle inequality,(9)âˆ£âˆ£âˆ£âˆ£âˆ£âˆ£âˆ£âˆ£Hs âŠ— HsâŒ©s, HsâŒªâˆ’x âŠ— xâŒ©s, xâŒªâˆ£âˆ£âˆ£âˆ£âˆ£âˆ£âˆ£âˆ£K,xâ‰¤âˆ£âˆ£âˆ£âˆ£âŒ©s, x âˆ’ HsâŒªâŒ©s, xâŒªâŒ©s, HsâŒªâˆ£âˆ£âˆ£âˆ£||HsâŠ— Hs||
K,x
 1âŒ©s, xâŒª||(x âŠ— x) âˆ’ (Hs âŠ— Hs)||
K,x
.We use Proposition 6.1 to write Hs = (1 âˆ’ Ïµ1)x   y = (1   Ïµ1)x âˆ’ z for y and z in K. Then,âŒ©s, x âˆ’ HsâŒª = âŒ©s, Ïµ1x âˆ’ yâŒª â‰¤ Ïµ1 âŒ©s, xâŒª and âŒ©s, x âˆ’ HsâŒª = âŒ©s, z âˆ’ Ïµ1xâŒªâ‰¥âˆ’Ïµ1 âŒ©s, xâŒª. Thus,|âŒ©s, x âˆ’ HsâŒª| â‰¤ Ïµ1 âŒ©s, xâŒª.Hence,âˆ£âˆ£âˆ£âˆ£âŒ©s, x âˆ’ HsâŒªâŒ©s, xâŒªâŒ©s, HsâŒªâˆ£âˆ£âˆ£âˆ£â‰¤âˆ£âˆ£âˆ£âˆ£Ïµ1 âŒ©s, xâŒªâŒ©s, xâŒª(âŒ©s, xâŒª   âŒ©s, Hs âˆ’ xâŒª)âˆ£âˆ£âˆ£âˆ£â‰¤Ïµ1(1 âˆ’ Ïµ1)âŒ©s, xâŒª.Since ||Hs||
K,x
â‰¤ ||x||
K,x
 ||Hs âˆ’ x||
K,x
â‰¤ 1 Ïµ1, it follows that the first term on the right-handside of (9) is bounded above byÏµ1 ||Hs||2
K,x
(1 âˆ’ Ïµ1)âŒ©s, xâŒªâ‰¤Ïµ1(1   Ïµ1)2(1 âˆ’ Ïµ1)âŒ©s, xâŒª.The second term on the right-hand side of (9) can be bounded above by(2   Ïµ1)Ïµ1âŒ©s, xâŒª.This implies the desired bound.DThe following theorem applies more generally, but the bound is weaker:Theorem 6.5. Let x âˆˆ int(K). Further let Î´P âˆˆ E and Î´D âˆˆ Eâˆ— and H and T2 : Eâˆ— âŠ• Eâˆ— â†’ Rbe a pair of symmetric, positive-definite bilinear forms such that
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â€¢ âŒ©Î´D,Î´P âŒª > 0;â€¢ T2Î´D = Î´P ;â€¢ there exists Ïƒ < 1 such that, for every z âˆˆ Eâˆ—,(1 âˆ’ Ïƒ)2T2[z,z] â‰¤ H[z,z] â‰¤T2[z,z](1 âˆ’ Ïƒ)2;â€¢ there exists Ïµ2 < 1 such  http://www.nuokui.com/pdf/aSKd6-rPJ6nI.html   that ||HÎ´D âˆ’ Î´P ||
K,x
â‰¤ Ïµ2 ||HÎ´D||
K,x
.Then,âˆ£âˆ£âˆ£âˆ£âˆ£âˆ£âˆ£âˆ£Î´P âŠ— Î´PâŒ©Î´D,Î´P âŒªâˆ’HÎ´D âŠ— HÎ´DâŒ©Î´D,HÎ´DâŒªâˆ£âˆ£âˆ£âˆ£âˆ£âˆ£âˆ£âˆ£K,xâ‰¤(Ïƒ(2   Ïƒ)1 âˆ’ 4Ïƒ  Ïµ2(2   Ïµ2)) ||HÎ´D||2
K,x
âŒ©Î´D,Î´P âŒª.Proof. Note thatâˆ£âˆ£âˆ£âˆ£âˆ£âˆ£âˆ£âˆ£Î´P âŠ— Î´PâŒ©Î´D,Î´P âŒªâˆ’HÎ´D âŠ— HÎ´DâŒ©Î´D,HÎ´DâŒªâˆ£âˆ£âˆ£âˆ£âˆ£âˆ£âˆ£âˆ£K,xâ‰¤âˆ£âˆ£âˆ£âˆ£âŒ©Î´D,HÎ´D âˆ’ Î´P âŒªâŒ©Î´D,Î´P âŒªâŒ©Î´D,HÎ´DâŒªâˆ£âˆ£âˆ£âˆ£||HÎ´D âŠ— HÎ´D||
K,x
 1âŒ©Î´D,Î´P âŒª||(Î´P âŠ— Î´P ) âˆ’ (HÎ´D âŠ— HÎ´D)||â‰¤âˆ£âˆ£âˆ£âˆ£âŒ©Î´D,HÎ´D âˆ’ Î´P âŒªâŒ©Î´D,HÎ´DâŒªâˆ£âˆ£âˆ£âˆ£||HÎ´D||2
K,x
âŒ©Î´D,Î´P âŒª Ïµ2(2   Ïµ2)||HÎ´D||2
K,x
âŒ©Î´D,Î´P âŒª.We write âŒ©Î´D,HÎ´D âˆ’ Î´P âŒª = âŒ©Î´D,(H âˆ’ T2)Î´DâŒª. Then,((1 âˆ’ Ïƒ)2 âˆ’ 1)âŒ©Î´D,T2Î´DâŒª â‰¤ âŒ©Î´D,(H âˆ’ T2)Î´DâŒª â‰¤(1(1 âˆ’ Ïƒ)2âˆ’ 1)âŒ©Î´D,T2Î´DâŒª.Thus,|âŒ©Î´D,HÎ´D âˆ’ Î´P âŒª| â‰¤2Ïƒ   Ïƒ2(1 âˆ’ Ïƒ)2âŒ©Î´D,Î´P âŒª.Writing âŒ©Î´D,HÎ´DâŒª = âŒ©Î´D,Î´P âŒª   âŒ©Î´D,HÎ´D âˆ’ Î´P âŒª, it follows thatâˆ£âˆ£âˆ£
âŒ©Î´D,HÎ´Dâˆ’Î´P âŒªâŒ©Î´D,HÎ´DâŒª
âˆ£âˆ£âˆ£ â‰¤
2Ïƒ Ïƒ21âˆ’4Ïƒ
. Hence,âˆ£âˆ£âˆ£âˆ£âŒ©Î´D,HÎ´D âˆ’ Î´P âŒªâŒ©Î´D,Î´P âŒªâŒ©Î´D,HÎ´DâŒªâˆ£âˆ£âˆ£âˆ£||HÎ´D âŠ— HÎ´D||
K,x
â‰¤2Ïƒ   Ïƒ21 âˆ’ 4Ïƒ||HÎ´D||2
K,x
âŒ©Î´D,Î´P âŒª.The desired result follows.DNow that we have seen a high-level analysis on bounding the norms of low rank updatesin a neighbourhood of the central path, we see that providing upper bounds on ||Hs âˆ’ x||
âˆ—s
,||HÎ´D âˆ’ Î´P ||
âˆ—s
, and lower bounds on âŒ©Î´D,Î´P âŒª, âŒ©Î´D,HÎ´DâŒª, and âŒ©Î´D,H1Î´DâŒª will be useful in thecomplexity analysis as well as in designing robust implementations of the algorithms. For therest of the analysis, we will increase the use of explicit absolute constants, for the sake ofconcreteness. We either write these constants as ratios of two integers or as decimals which
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represent rationals with denominator: 106 (whence, we are able to express the latter constantsexactly as decimals with six digits after the point).Theorem 6.6. Assume ||Î´D||
s
â‰¤ 1/64, and take H := ï¿½Fâˆ— (Å¡) andH1 := H  x âŠ— xâŒ©s, xâŒªâˆ’Hs âŠ— HsâŒ©s, HsâŒª.Then,âˆ£âˆ£âˆ£âˆ£âˆ£âˆ£âˆ£âˆ£Î´P âŠ— Î´P  http://www.nuokui.com/pdf/aSKd6-rPJ6nI.html  âŒ©Î´D,Î´P âŒªâˆ’H1Î´D âŠ— H1Î´DâŒ©Î´D,H1Î´DâŒªâˆ£âˆ£âˆ£âˆ£âˆ£âˆ£âˆ£âˆ£
âˆ—s
â‰¤ 3.502346ï¿½||Î´D||s.Proof. We writeÎ´P âŠ— Î´PâŒ©Î´D,Î´P âŒªâˆ’H1Î´D âŠ— H1Î´DâŒ©Î´D,H1Î´DâŒª=1âŒ©Î´D,Î´P âŒª[(Î´P âŠ— Î´P ) âˆ’ (H1Î´D âŠ— H1Î´D)] (1âŒ©Î´D,H1Î´DâŒªâˆ’1âŒ©Î´D,Î´P âŒª)H1Î´D âŠ— H1Î´D.Notice thatâˆ£âˆ£âˆ£âˆ£1âŒ©Î´D,H1Î´DâŒªâˆ’1âŒ©Î´D,Î´P âŒªâˆ£âˆ£âˆ£âˆ£=âˆ£âˆ£âˆ£âˆ£âŒ©Î´D,H1Î´D âˆ’ Î´P âŒªâŒ©Î´D,H1Î´DâŒªâŒ©Î´D,Î´P âŒªâˆ£âˆ£âˆ£âˆ£â‰¤||Î´D||s||H1Î´D âˆ’ Î´P ||âˆ—
s
|âŒ©Î´D,H1Î´DâŒªâŒ©Î´D,Î´P âŒª|â‰¤ (1065087000000/907152721283)1ï¿½||Î´D||s.Further, recall that ||H1Î´D||âˆ—
s â‰¤ 1.024263ï¿½||Î´D||s. Thus, the second termâ€™s norm is bounded
above by 1.231765ï¿½||Î´D||s. Using the lower bound on âŒ©Î´D,Î´P âŒª and the upper bounds on||H1Î´D âˆ’ Î´P ||âˆ—
s and ||H1Î´D   Î´P ||âˆ—s, we get a bound on the first termâ€™s norm of
(1.065087) ï¿½ (2.048265)0.960803ï¿½||Î´D||s â‰¤ 2.270581ï¿½||Î´D||s.Adding the bounds on the two terms together gives the advertised bound.DTheorem 6.7. Assume ||Î´D||
s
â‰¤ 1/64, and take H := ï¿½Fâˆ— (Å¡),H1 := H  x âŠ— xâŒ©s, xâŒªâˆ’Hs âŠ— HsâŒ©s, HsâŒª,andT2 := H1  Î´P âŠ— Î´PâŒ©Î´D,Î´P âŒªâˆ’H1Î´D âŠ— H1Î´DâŒ©Î´D,H1Î´DâŒª.Then, ||T2 âˆ’ H||
âˆ—s
â‰¤ 9.859785ï¿½||Î´D||
s
â‰¤ 0.154060ï¿½.Proof. We consider the two rank-two updates separately; Theorem B.3 controls the size of thefirst rank-two update and Theorem 6.6 controls the size of the second update. We simply addthe two bounds together.D
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Theorem 6.8. If ||Î´D||s â‰¤ 1/64, then there exists a T2 âˆˆ S  (Eâˆ—,Eâˆ—) satisfying the followingproperties:â€¢ T2s = x;â€¢ T2Ëœs = Ëœx;â€¢ 0.8303376ï¿½Fâˆ— (s) â‰¼ T2 â‰¼ 1.169871ï¿½Fâˆ— (s);â€¢ 0.825446
ï¿½
[F (x)]
âˆ’1
â‰¼ T2 â‰¼ 1.174800
ï¿½
[F (x)]
âˆ’1
.That is, T2 âˆˆ T 2
2 (1.211468;x, s).
Proof. We use Theorem 6.7 which gives a T2 âˆˆ T 2
1 (x, s) such that ||T2 âˆ’ ï¿½Fâˆ— (Å¡)|| â‰¤ 0.154060ï¿½.
Now, we use the Dikin ellipsoid bound, the fact that
1
(1âˆ’||Î´D||s)2 â‰¤ 1.031998 and Theorem 2.5to obtain the last two operator relations.DNote that in   http://www.nuokui.com/pdf/aSKd6-rPJ6nI.html  the above analysis, we did not utilize the additional flexibility provided by theterm (ï¿½Ëœï¿½ âˆ’ 1). This establishes, in the language of [47], that Î¾âˆ— is O(1) within a particularneighbourhood of the central path. Moreover, our specific choice TH is in T2(Î·;x, s) for Î· =O(1), for every pair (x, s) that is in the same neighbourhood.Therefore, Theorem 5.1 of [47] implies that a wide range of potential reduction algorithms(whose iterates are restricted in a neighbourhood of the central path) have the iteration com-plexity of O(âˆšÏ‘ln (1/Ïµ)).6.1. Bounds in v-space. In this subsection and the next section, we assume that some suitablebases (and the underlying inner product) have been chosen for the underlying spaces (and weidentify both E and Eâˆ— with Rn) and for the sake of concreteness, we write A for the underlyingmatrix representation of A etc.The following lemma is useful to the convergence analysis in the next section.Lemma 6.9. Suppose x âˆˆ int(K) and s âˆˆ int(Kâˆ—) are such that ||Î´D||s < 1/64. Take T2 asin Theorem 6.8 and take T âˆˆ Sn
   to be its unique symmetric positive-definite square root. Let
v := Ts = Tâˆ’1x and Î´v := TÎ´D. Let z be an arbitrary vector in v-space. Let x âˆˆ int(K) ands âˆˆ int(Kâˆ—); define Î´D := s   ï¿½F (x ) and Î´v := TÎ´D. Then,(1) ||Tz|| â‰¤ 1.081606âˆšï¿½||z||
s
;(2) ||z||
s
â‰¤ 1.097395||Tz||/âˆšï¿½;(3) ||Î´v|| â‰¤ 0.016901âˆšï¿½;(4) ||Î´D||s â‰¤
||Î´D||s1âˆ’||sâˆ’s ||s
;(5) if ||Î´v|| â‰¤ 0.003703âˆšï¿½ and ||s âˆ’ s ||s â‰¤ 1/25, then ||Î´D||s â‰¤ 0.004234;(6) if ||Î´v|| â‰¤ 0.010519âˆšï¿½ and ||s âˆ’ s ||s â‰¤ 1/25, then ||Î´D||s â‰¤ 1/64.
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Proof. Recall from Theorem 6.8 that(10)0.830376ï¿½||z||2
s â‰¤ ||Tz||2 â‰¤ 1.1169871ï¿½||z||2s.
(1) This is the square root of ||Tz||
2 â‰¤ 1.169871ï¿½||z||2s
with a constant rounded up.(2) This is the square root of ï¿½||z||
2s
â‰¤
10.830376
||Tz||2w  http://www.nuokui.com/pdf/aSKd6-rPJ6nI.html  ith a constant rounded up.(3) Take z = Î´D in part (1) and then use ||Î´D||s â‰¤ 1/64; we see||Î´v|| < 1.081606âˆšï¿½||Î´D||s â‰¤ 0.016901âˆšï¿½,as desired.(4) This is the Dikin ellipsoid bound for comparing the s -norm with the s-norm.(5) If ||Î´v|| â‰¤ 0.003703âˆšï¿½, then by part (2) ||Î´D||s â‰¤ 0.004064. By part (4), then,||Î´D||s â‰¤ 0.004234, as desired.(6) If ||Î´v|| â‰¤ 0.010519âˆšï¿½, then by part (2) ||Î´D||s â‰¤ 0.011544. By part (4), then,||Î´D||s â‰¤ 0.012025, which implies the desired result.D7. AlgorithmsIn this section, we complete our proof of O(âˆšÏ‘ln 1
Ïµ
) iteration complexity bounds on variants ofthe following feasible-start primal-dual interior point algorithm with different choices of Î± andÎ³:Take k := 0 and (x(0),y(0),s(0)) to be feasible and central (we can also accept approximatelycentral points).while (s(k)) x(k) > ÏµÏ‘ doLet ï¿½k := (s(k)) x(k)/Ï‘.Take T2 as in Theorem 6.7.Select Î³ âˆˆ [0,1].Solveï£«ï£0 AIA 00I0 T2ï£¶ï£¸ï£«ï£dxdydsï£¶ï£¸ =ï£«ï£00âˆ’x(k) âˆ’ Î³ï¿½kFâˆ—(s)ï£¶ï£¸.Select Î±k âˆˆ [0,âˆž).(x(k 1),y(k 1),s(k 1)) â†� (x(k),y(k),s(k))   Î±k(dx,dy,ds).k â†� k   1.end whileLemma 7.1. Let rv := âˆ’v   Î³ï¿½w. Then, the system of equations in Line 3 of the abovealgorithm implyTâˆ’1dx = Î ker(AT)rv, Tds = Î 
im((AT) )rv.
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In particular, ||Tâˆ’1dx|| â‰¤ ||rv|| and ||Tds|| â‰¤ ||rv||.Proof. The third equation ensures that Tâˆ’1dx   Tds = rv. The first two equations imply thatTâˆ’1dx must lie in ker(AT) while Tds must lie in im((AT) .) Since these two linear spaces areorthogonal, the result follows.DThe following result does not hint at quadratic convergence. However, a tighter analysis ofthe low-rank updates showing that the approximation error is linear in ||Î´D||s within the 1
64
-neighbourhood would suffice to establish quadratic convergence. This is not hard to do, sincethe ingredients are already given above. We do not do this here, because qua  http://www.nuokui.com/pdf/aSKd6-rPJ6nI.html  dratic convergenceof centering is not needed to establish the desired complexity result.Lemma 7.2. Suppose x(k) âˆˆ int(K) and s(k) âˆˆ int(Kâˆ—) define a feasible solution. If Î³k = 1and Î±k = 1 and ||Î´k
D||s(k) â‰¤ 164
, thenâ€¢ Ax(k 1) = b and A y(k 1)   s(k 1) = c.â€¢ x(k 1) âˆˆ int(K) and s(k 1) âˆˆ int(Kâˆ—).â€¢ ||Î´
(k 1)D
||s(k 1) â‰¤ 0.004234.â€¢ ï¿½k 1 = ï¿½k.Proof. The system of linear equations that determine dx, dy, and ds guarantee that dx âˆˆ kerAand ds = âˆ’A dy; since Ax(k) = b and A y(k)   s(k) = c, it follows that Ax(k 1) = b andA y(k 1)  s(k 1) = c. We drop the superscript k when speaking of the kth iterate in this proof.Notice that, with this choice of Î³,Tâˆ’1dx   Tds = âˆ’Î´v.Since||dx||x â‰¤âˆš1.174800âˆšï¿½||Tâˆ’1dx|| â‰¤âˆš1.174800âˆšï¿½||Î´v|| â‰¤ 0.018319 < 1,strict primal feasibility is retained (for the last inequality above, we used Lemma 6.9 part (3)).A similar argument shows that strict dual feasibility is retained.For the first equation below, we use the identity F (x   dx) = F (x)   âˆ«
10
F (x   Ï„dx)dxdÏ„ andobtain||T(s   ds   ï¿½F (x   dx))|| =âˆ£âˆ£âˆ£âˆ£âˆ£âˆ£âˆ£âˆ£T[Î´D   ds   ï¿½(âˆ« 1
0
F (x   Ï„dx)dÏ„)dx]âˆ£âˆ£âˆ£âˆ£âˆ£âˆ£âˆ£âˆ£â‰¤ ||Î´v   Tds   Tâˆ’1dx||  âˆ£âˆ£âˆ£âˆ£âˆ£âˆ£âˆ£âˆ£T[Tâˆ’2 âˆ’ ï¿½(âˆ« 1
0
F (x   Ï„dx)dÏ„)]dxâˆ£âˆ£âˆ£âˆ£âˆ£âˆ£âˆ£âˆ£.
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The first term is, of course, zero. However, notice that, by the Dikin ellipsoid bound andTheorem 6.8ï¿½(âˆ« 1
0
F (x   Ï„dx)dÏ„)â‰¼ 1.219055Tâˆ’2and, similarly,ï¿½(âˆ« 1
0
F (x   Ï„dx)dÏ„)â‰½ 0.795480Tâˆ’2We therefore bound, using Lemma 6.9 part (3),âˆ£âˆ£âˆ£âˆ£âˆ£âˆ£âˆ£âˆ£T[Tâˆ’2 âˆ’ ï¿½(âˆ« 1
0
F (x   Ï„dx)dÏ„)]dxâˆ£âˆ£âˆ£âˆ£âˆ£âˆ£âˆ£âˆ£â‰¤ 0.219055âˆ£âˆ£âˆ£âˆ£Tâˆ’1dxâˆ£âˆ£âˆ£âˆ£ = 0.219055||Î´v|| < 0.003703âˆšï¿½,which implies, by Lemma 6.9 part (5), the advertised bound on the new ||Î´D||s.As we observed in Section 2, ï¿½ is unchanged by a centering iteration.DLemma 7.3. Suppose ||Î´
(k)D ||s(k) â‰¤ 0  http://www.nuokui.com/pdf/aSKd6-rPJ6nI.html  .004234, let Î³k := 0 and Î±k := 0.005âˆšÏ‘
. Then,â€¢ Ax(k 1) = b and A y(k 1)   s(k 1) = c;â€¢ x(k 1) âˆˆ int(K) and s(k 1) âˆˆ int(Kâˆ—);â€¢ ï¿½k 1 â‰¤ (1 âˆ’ Î±k)ï¿½k;â€¢ ||Î´
(k 1)D
||s(k 1) â‰¤ 1
64
.Proof. We recall that ||Î´D||s â‰¤ 0.004234 means that, by Lemma 6.9 part (1), ||Î´v|| â‰¤ 0.004580âˆšï¿½.Notice that by Theorem ??, we have||dx||x â‰¤âˆš1.174800ï¿½k||Tâˆ’1dx|| â‰¤âˆš1.174800ï¿½k||v|| â‰¤ 1.0839âˆšÏ‘.Consequently, any step with Î± < 1
2âˆšÏ‘
retains strict primal feasibility. A similar analysis (dueto the primal-dual symmetry of our set-up) reveals that ||ds||s â‰¤ 1.097393âˆšÏ‘ and hence thedual step retains strict dual feasibility for Î± similarly bounded. Notice that ||Î±kds||s â‰¤ 1/25;this permits us to use Lemma 6.9 part (6) later.As we observed in Section 2, âŒ©s(Î±),x(Î±)âŒª = (1 âˆ’ Î±)Ï‘ï¿½. This establishes the desired reductionin ï¿½.
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We computeâˆ£âˆ£âˆ£âˆ£âˆ£âˆ£TÎ´
(k 1)D
âˆ£âˆ£âˆ£âˆ£âˆ£âˆ£ = ||T [s   Î±ds   ï¿½F (x   Î±dx)]||=âˆ£âˆ£âˆ£âˆ£âˆ£âˆ£âˆ£âˆ£T[s   Î±ds   ï¿½F (x)   Î±ï¿½(âˆ« 1
0
F (x   Ï„Î±dx)dÏ„)dx]âˆ£âˆ£âˆ£âˆ£âˆ£âˆ£âˆ£âˆ£â‰¤ ||Î´v||   Î±âˆ£âˆ£âˆ£âˆ£âˆ£âˆ£âˆ£âˆ£Tds   ï¿½T(âˆ« 1
0
F (x   Ï„Î±dx)dÏ„)dxâˆ£âˆ£âˆ£âˆ£âˆ£âˆ£âˆ£âˆ£,where for the second equation above, we used the identityF (x   Î±dx) = F (x)   Î±(âˆ« 1
0
F (x   Ï„Î±dx)dÏ„)dx. Let us writeE := ï¿½(âˆ« 1
0
F (x   Ï„Î±dx)dÏ„)âˆ’ Tâˆ’2.Then, by Theorem 6.8, and the Dikin ellipsoid bound, we obtainâˆ’0.183477Tâˆ’2 â‰¼ E â‰¼ 0.1876638Tâˆ’2.We thus get an upper bound ofâˆ£âˆ£âˆ£âˆ£âˆ£âˆ£TÎ´
(k 1)D
âˆ£âˆ£âˆ£âˆ£âˆ£âˆ£ â‰¤ ||Î´v||   Î±kâˆ£âˆ£âˆ£âˆ£Tds   T (E   Tâˆ’2)dxâˆ£âˆ£âˆ£âˆ£â‰¤ ||Î´v||   Î±kâˆ£âˆ£âˆ£âˆ£Tds   Tâˆ’1dxâˆ£âˆ£âˆ£âˆ£   Î±k ||TEdx||â‰¤ ||Î´v||   Î±k ||v||   Î±k ||TET||âˆ£âˆ£âˆ£âˆ£Tâˆ’1dxâˆ£âˆ£âˆ£âˆ£â‰¤ ||Î´v||   Î±k (1   ||TET||)||v||â‰¤ 0.004580âˆšï¿½   (0.005) ï¿½ (1.187638)âˆšï¿½< 0.010519âˆšï¿½.The norm in the expression ||TET|| above is the spectral (operator) 2-norm. This implies, byLemma 6.9 part (6), thatâˆ£âˆ£âˆ£âˆ£âˆ£âˆ£Î´
(k 1)D
âˆ£âˆ£âˆ£âˆ£âˆ£âˆ£s(  http://www.nuokui.com/pdf/aSKd6-rPJ6nI.html  k 1)â‰¤ 1
64
, as desired.DWe immediately haveCorollary 7.4. Starting from an initial, primal-dual pair of feasible and central points, onecan alternately apply the predictor and corrector steps outlined from the last two lemmata andrecover an algorithm that takes at most 278âˆšÏ‘ iterations to reduce ï¿½ by a factor of two. Inparticular, this gives an O(âˆšÏ‘ln (1/Ïµ))bound on the iteration complexity of the algorithmusing this choice of Î³.Proof. By Lemma 7.3, ï¿½ is reduced by a factor of(1 âˆ’ 0.005
âˆšÏ‘
)in each iteration performing apredictor step. By Lemma 7.2 every corrector step (which follows every predictor step) gets usin a neighbourhood of the central path given by ||Î´D||
s
â‰¤ 1/64 without changing ï¿½. Therefore,
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to provide an upperbound on the number of predictor steps (to reduce ï¿½ by a factor of two), itsuffices to solve the inequality(1 âˆ’0.005âˆšÏ‘)kâ‰¤12,for a (small) positive integer k. We obtain (using the fact that ln(1 âˆ’ Îº) â‰¤ âˆ’Îº, for all Îº < 1),choosingk â‰¥ln(2)0.005âˆšÏ‘suffices. Doubling such a feasible k (to account for the corrector steps) yields the claimedbound.D8. Hyperbolicity cone programming: The hyperbolic barriers special caseIn this section, we assume that we are given access to a hyperbolic polynomial p and K is acorresponding hyperbolicity cone. As we mentioned earlier, on the one hand, F(x) := âˆ’ln(p(x))is a self-concordant barrier for K with long-step Hessian estimation property. On the otherhand, we do not necessarily have explicit and efficient access to Fâˆ— or its derivatives; moreover,Fâˆ— will not have the long-step Hessian estimation property, unless K is a symmetric cone. Wewill discuss two issues:â€¢ How do we evaluate Fâˆ—?â€¢ Can we compute the primal integral scaling?8.1. Evaluating the dual barrier. Given an oracle returning F(x), F (x), and F (x) oninput x,  http://www.nuokui.com/pdf/aSKd6-rPJ6nI.html   we describe an algorithm for approximating Fâ€™s Legendre-Fenchel conjugate, Fâˆ—, anddiscuss its convergence.loopr â†� F (x)   sif ||r||âˆ—
x < Ïµ then return x
end ifN â†� âˆ’[F (x)]
âˆ’1
rx â†� x   Nend loopIntuitively, this is steepest descent in the local x-norm (i.e., Newtonâ€™s method for solvingF (x)   s = 0). This algorithm is locally quadratically convergent, since the dual s-norm iswell-approximated by the dual x-norm when âˆ’F (x) is â€œclose toâ€� s. In particular, one canshow that if ||r||âˆ—
x â‰¤ 14
, then the x-norm of the new residual is at most 16
27
of that of the old.This implies that the dual s-norm of the new residual is at most 64
81
of that of the old residual,
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ensuring descent. The dual s-norm is scaled by a factor of at most||r||x/(1 âˆ’ ||r||x)4 â‰¤ 3.2||r||xin each iteration, establishing local quadratic convergence.Note that replacing s with âˆ’F (x), for some sufficiently good approximation x, can degrade thecomplementarity gap and the measure of centrality ||Î´P ||x and ruins the equation A y   s = c.Thus one needs to work with an infeasible interior-point method or a self-dual embeddingtechnique in the absence of an exactly-evaluated dual barrier. However, it is straightforwardto bound the local s-norm of the increase in residual by ||s   F (x)||s.We can use various integration techniques to evaluate the primal integral scaling as we outlinein Appendix C.9. Conclusions and future workWe presented a new primal-dual scaling map based on a line integral for convex programmingwhere only a Ï‘-LHSCB is supplied. We derived some properties of this scaling, notably that itpoints to the richness of potential primal-dual local metrics, enriches the connection of primal-dual interior-point methods to Riemannian geometry. We presented a new analysis of low-rankupdates of [47] showing that, if one   http://www.nuokui.com/pdf/aSKd6-rPJ6nI.html  is close to the central path and one begins with a certainapproximation to the integral scaling, the low-rank update has small norm close to the centralpath. Some steps of this analysis were peculiar to the particular approximation chosen; weleave it to future work to generalise the analysis to something depending more directly on theapproximation error. We presented a generalization of the Mizuno-Todd-Ye predictor-correctorscheme that uses the above tools and showed that it matches the current best, worst-caseiteration complexity of O(âˆšÏ‘ln(1/Ïµ)), of the special case of symmetric cone programming.We presented an algorithm for computing an approximation to the conjugate barrier given anoracle that computes the primal barrier and discussed some bounds that, within the context ofan infeasible-start interior-point method or a self-dual embedding technique (see [51, 33]), donot degrade the worst-case iteration complexity.We presented two techniques based on Gaussian quadrature for evaluating the new primal-dualscaling map for hyperbolic barrier functions; one exact, and one with bounded approximationerror. Again, we leave to future work the problem of tying such an approximation error boundto a bound on the magnitude of the necessary low-rank update to the approximation.References
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Appendix A. Primal-dual symmetry based on the local metricsIn [47] a very general framework for primal-dual symmetric algorithms were provided. In thissection, we make the richness for the choice of such algorithms within the framework provided bythe sets T0,T1,T2, more explicit. Basically, every consistent choice of a local primal-dual metricT2 from any of the sets T0,T1,T2 can be used to design a primal-dual symmetric interior-pointalgorithm as we prove below.Proposition A.1. Let (x, s) âˆˆ int(K) âŠ• int(Kâˆ—). Then, for every pair H, T âˆˆ T 2
0 (x, s),
12(H   T),(Hâˆ’1   Tâˆ’12)âˆ’1âˆˆ T 2
0 (x, s).
The same property holds for T 2
1 (x, s) and for T 22 (Î·;x, s) (for every Î· â‰¥ 1).
Proof. Follows from the definitions and convexity of T 2
0 ,T 21 ,T 22 .
DCorollary A.2. For every convex cone K âŠ‚ E and for every pair (x, s) âˆˆ int(K) âŠ• int(Kâˆ—),the sets T 2
0 (x, s), T 21 (x, s) and T 22 (Î·;x, s) (for every Î· â‰¥ 1) are geodesically convex.
Proof. Since T 2
2 (Î·;x, s) is a closed subset of Sn  , employing Proposition A.1 above and Lemma
2.3 of [14], we conclude that T 2
2 (Î·;x, s) is geodesically convex for all Î·. For T0 and T1 we can
adapt the proof of the same lemma (even though our sets are not closed, we can argue that alllimits of all mean iterations on the elements of T 2
0 and T 21 are positive-definite and hence stay
in the corresponding set).DThe above corolla  http://www.nuokui.com/pdf/aSKd6-rPJ6nI.html  ry indicates a way to convert any consistent choice of T2 to a scaling for aprimal-dual symmetric interior-point algorithm in the sense of [45]. (Simply take the operatorgeometric mean of the consistent choice of T2 with the inverse of the same formula for T2applied to (P) and (D) switched.)
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Appendix B. Details of the complexity and error analysisB.1. Zeroth-order low-rank update. We bound the operator norm of the zeroth-order low-rank update in a small neighbourhood of the central path defined by the condition ||Î´D||s â‰¤ 1
64
.Theorem B.1. Assume ||Î´D||
s
â‰¤ 1/64. Then(1) ||Fâˆ— (s)Î´D||âˆ—
s = ||Î´D||s;
(2) ||Fâˆ— (Å¡)Î´D||
âˆ—s
â‰¤ 1.031998||Î´D||
s
;(3) for every v âˆˆ Eâˆ—,|âŒ©v, ï¿½Fâˆ— (Å¡)Î´D âˆ’ Î´P âŒª| â‰¤ 0.524190ï¿½||v||
s
||Î´D||2
s
;(4) ||ï¿½Fâˆ— (Å¡)Î´D âˆ’ Î´P ||
âˆ—s
â‰¤ 0.524190ï¿½||Î´D||2
s
.Proof.(1) This follows straightforwardly from the definitions.(2) Recall that Fâˆ— (ï¿½s) â‰¼
1(1âˆ’||Î´D||)2 Fâˆ— (s). Now we apply the previous part. Next, we notice
that
1(1âˆ’||Î´D||s)2 â‰¤ 1.031998.
(3) Let f(t) = âŒ©u, Fâˆ—(Å¡  tÎ´D)âŒª. We consider an order-two Taylor expansion of f aroundzero; we see that, for every t âˆˆ [âˆ’1/2,1/2], there exists a ï¿½tâˆˆ [min(0,t),max(0,t)] suchthatf(t) = f(0)   tf (0)  12t2f (ï¿½t).Notice that|f (ï¿½t)| = |Fâˆ— (Å¡  ï¿½tÎ´D)[u, Î´D,Î´D]| â‰¤ 2||u||||Î´D||2,where both norms are the local (Å¡  ï¿½tÎ´D) norms (we used self-concordance property ofFâˆ—). We then apply the Dikin ellipsoid bound to these norms to relate||u||Å¡ ï¿½tÎ´D â‰¤11 âˆ’ ||Î´D||s||u||sand similarly for ||Î´D||. Consequently, using 1/(1 âˆ’ ||Î´D||s) â‰¤ 1.015874, we see that|f (ï¿½t)| â‰¤ 1.048378||u||s||Î´D||2
s.
Thus, for some ï¿½t1 âˆˆ [âˆ’1/2,0] and ï¿½t2 âˆˆ [0,1/2], we havef(1/2) âˆ’ f(âˆ’1/2) = f (0)  18(f (ï¿½t1) âˆ’ f (ï¿½t2)).Consequently,|f (0) âˆ’ f(1/2)   f(âˆ’1/2)| â‰¤ 0.262094||u||s||Î´D||2
s.
Notice that, by s  http://www.nuokui.com/pdf/aSKd6-rPJ6nI.html  ubstitution and the chain rule,â€¢ f (0) = âŒ©u, Fâˆ— (Å¡)Î´DâŒª;â€¢ f(âˆ’1/2) = âŒ©u, Fâˆ—(ï¿½Ëœs)âŒª = âˆ’âŒ©u, x/ï¿½âŒª;â€¢ f(1/2) = âŒ©u, Fâˆ—(s)âŒª = âˆ’âŒ©u, ËœxâŒª.
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The claimed bound now follows.(4) We use the definition of a dual norm:||Fâˆ— (Å¡)Î´D âˆ’ x/ï¿½   Ëœx||âˆ—
s
=sup
||u||s=1
âŒ©u, Fâˆ— (Å¡)Î´D âˆ’ x/ï¿½   ËœxâŒªâ‰¤sup
||u||s=1
0.524190||u||s||Î´D||2
s = 0.524190||Î´D||2s.
DLemma B.2. Assume ||Î´D||
s
â‰¤ 1/64. Then,(1) for every v âˆˆ Eâˆ—,|âŒ©v, Fâˆ— (Å¡)[Î´D]âŒª| â‰¤ 1.015811||v||
s
||Î´D||
s
;(2) for every v âˆˆ Eâˆ— and ï¿½s âˆˆ [s, ï¿½Ëœs],|Fâˆ— (ï¿½s)[v, Î´D,ï¿½Ëœs]| â‰¤ 2.096758||v||
s
||Î´D||
s
âˆšÏ‘;(3) ||Hs âˆ’ x||
âˆ—s
â‰¤ 2.064190âˆšÏ‘ï¿½||Î´D||
s
;(4) ||x||
âˆ—s
â‰¤ 1.015874âˆšÏ‘ï¿½;(5) ||Hs||
âˆ—s
â‰¤ 1.015811âˆšÏ‘ï¿½;(6) ||Hs   x||
âˆ—s
â‰¤ 2.031685âˆšÏ‘ï¿½;(7) âŒ©s, HsâŒª â‰¥ 0.984436Ï‘ï¿½.Proof.(1) We compute, using Cauchy-Schwarz and the Dikin ellipsoid bound,|âŒ©v, Fâˆ— (Å¡)[Î´D]âŒª| = |Fâˆ— (Å¡)[Î´D,v]| â‰¤ ||Î´D||
Å¡
||v||
Å¡
â‰¤ 1.015810||Î´D||
s
||v||
s
.(2) We compute|Fâˆ— (ï¿½s)[v, Î´D,ï¿½Ëœs]| â‰¤ 2||v||
ï¿½s
||Î´D||
ï¿½s
||ï¿½Ëœs||
ï¿½s
â‰¤ 2.096758||v||
s
||Î´D||
s
||ï¿½Ëœs||
ï¿½Ëœs
.(3) We writeHs = ï¿½Fâˆ— (Å¡)(ï¿½Ëœs)   ï¿½Fâˆ— (Å¡)Î´D.On the first term, we perform a Taylor expansion around ï¿½Ëœs; for every v there is a ï¿½s onthe line segment between s and ï¿½Ëœs such thatFâˆ— (Å¡)[ï¿½Ëœs, v] = Fâˆ— (s âˆ’ Î´D)[ï¿½Ëœs, v]  12Fâˆ— (ï¿½s)[ï¿½Ëœs, Î´D,v]= âŒ©v, xâŒª/ï¿½  12Fâˆ— (ï¿½s)[ï¿½Ëœs, Î´D,v].â‰¤ âŒ©v, xâŒª/ï¿½   1.048379||v||
s
||Î´D||
s
âˆšÏ‘.We also bound (using the Dikin ellipsoid bound first, followed by Lemma 7.2)âŒ©v, Fâˆ— (Å¡)Î´DâŒª â‰¤ 1.015811||v||s||Î´D||s.
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Adding these bounds and taking a supremum over all v such that ||v||s = 1, since Ï‘ â‰¥ 1,yields the bound||Hs âˆ’ x||âˆ—
s â‰¤ 2.064190
âˆšÏ‘ï¿½||Î´D||s  http://www.nuokui.com/pdf/aSKd6-rPJ6nI.html  ,as desired.(4) This follows directly from the Dikin ellipsoid bound.(5) Notice that||Hs||âˆ—
s = ï¿½âŒ©s, Fâˆ— (Å¡)(Fâˆ— (s))âˆ’1Fâˆ— (Å¡)sâŒª1/2
â‰¤ ï¿½âŒ©s, Fâˆ— (s)sâŒª
1/2
(1 âˆ’ ||Î´D||s/2)2â‰¤ 1.015810âˆšÏ‘ï¿½.(6) We apply the triangle inequality to the last two parts.(7) Note that âŒ©s, HsâŒª = ï¿½F (Å¡)[s, s] â‰¥ ï¿½(1 âˆ’ ||Î´D||
s
/2)2F (s)[s, s] â‰¥ (16129/16384)Ï‘ï¿½.DTheorem B.3. Assume ||Î´D||
s
â‰¤ 1/64. Then, the zeroth-order low rank update has a smallnorm:âˆ£âˆ£âˆ£âˆ£âˆ£âˆ£âˆ£âˆ£x âŠ— xâŒ©s, xâŒªâˆ’Hs âŠ— HsâŒ©s, HsâŒªâˆ£âˆ£âˆ£âˆ£âˆ£âˆ£âˆ£âˆ£sâ‰¤ 6.357439ï¿½||Î´D||
s
.Proof. We write the first low-rank update as(x âŠ— x) âˆ’ (Hs âŠ— Hs)âŒ©s, xâŒª ( 1âŒ©s, xâŒªâˆ’1âŒ©s, HsâŒª)Hs âŠ— Hs.Then, using the triangle inequality, Lemma 2.11, and the equation ||hâŠ—h||s = ||h||âˆ—2
s we bound
its norm above by1âŒ©s, xâŒª||x âˆ’ Hs||
âˆ—s
||x   Hs||
âˆ—s
 âˆ£âˆ£âˆ£âˆ£1âŒ©s, xâŒªâˆ’1âŒ©s, HsâŒªâˆ£âˆ£âˆ£âˆ£||Hs||
âˆ—2s
.The first term is bounded above by(83875677203/20000000000)ï¿½||Î´D||s.To bound the second term, note thatâˆ£âˆ£âˆ£âˆ£1âŒ©s, xâŒªâˆ’1âŒ©s, HsâŒªâˆ£âˆ£âˆ£âˆ£=âˆ£âˆ£âˆ£âˆ£âŒ©s, Hs âˆ’ xâŒªÏ‘ï¿½âŒ©s, HsâŒªâˆ£âˆ£âˆ£âˆ£â‰¤||s||s||Hs âˆ’ x||âˆ—
s
Ï‘ï¿½âŒ©s, HsâŒªâ‰¤ 2.064190||Î´D||sâŒ©s, HsâŒª.Now, we bound âŒ©s, HsâŒª below by 0.984436Ï‘ï¿½ to get a bound of(105686528/50403125)||Î´D||sÏ‘ï¿½.The bound ||Hs||âˆ—
s â‰¤ 1.015811
âˆšÏ‘ï¿½ then gives an overall bound on the second term of(2129979833381099/98443603515625000)ï¿½||Î´D||sAdding fractions gives (something slightly stronger than) the desired bound.D
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B.2. First-order low-rank update. Next, we bound the operator norm of the first-order low-rank update in a small neighbourhood of the central path defined by the condition ||Î´D||s â‰¤ 1
64
.Lemma B.4. Assume ||Î´D||
s
â‰¤ 1/64. Let H1 := H   xâŠ—x
âŒ©s,xâŒª
âˆ’ HsâŠ—Hs
âŒ©s,HsâŒª
. Then,(1) ||HÎ´D âˆ’ Î´P ||
âˆ—s
â‰¤ 0.524190ï¿½||Î´D||2
s
;(2) âŒ©Î´D,HÎ´DâŒª â‰¥  http://www.nuokui.com/pdf/aSKd6-rPJ6nI.html   0.968994ï¿½||Î´D||2
s
;(3) âŒ©Î´D,Î´P âŒª â‰¥ 0.960803ï¿½||Î´D||2
s
;(4) ||HÎ´D||
âˆ—s
â‰¤ 1.015811ï¿½||Î´D||
s
;(5) ||Î´P ||
âˆ—s
â‰¤ 1.024002ï¿½||Î´D||
s
;(6) ||HÎ´D   Î´P ||
âˆ—s
â‰¤ 2.039813ï¿½||Î´D||
s
;(7) ||H1Î´D âˆ’ HÎ´D||
âˆ—s
â‰¤ 0.540897ï¿½||Î´D||2
s
;(8) ||H1Î´D âˆ’ Î´P ||âˆ—
s â‰¤ 1.065087ï¿½||Î´D||2s;
(9) ||H1Î´D||âˆ—
s â‰¤ 1.024263ï¿½||Î´D||s;
(10) ||H1Î´D   Î´P ||âˆ—
s â‰¤ 2.048265ï¿½||Î´D||s;
(11) âŒ©Î´D,H1Î´DâŒª â‰¥ 0.944161ï¿½||Î´D||2
s.
Proof.(1) This was proven in Theorem B.1, part (4).(2) This follows from the Dikin ellipsoid bound; H â‰½ 0.968994ï¿½Fâˆ— (s).(3) Notice thatâŒ©Î´D,Î´P âŒª = âŒ©Î´D,HÎ´DâŒª   âŒ©Î´D,Î´P âˆ’ HÎ´DâŒª.We bound the second term by Cauchy-Schwarz:âŒ©Î´D,Î´P âˆ’ HÎ´DâŒª â‰¤ ||Î´D||s||HÎ´D âˆ’ Î´P ||âˆ—
s â‰¤ 0.524190ï¿½||Î´D||3s.
Using this with the bound from the previous part gives the advertised inequality.(4) We compute, using Lemma 7.2||HÎ´D||âˆ—
s = ï¿½
âŒ©Î´D,Fâˆ— (Å¡)(Fâˆ— (s))
âˆ’1
Fâˆ— (Å¡)Î´DâŒª1/2â‰¤ 1.015811ï¿½âŒ©Î´D,Fâˆ— (s)Î´DâŒª
1/2
= 1.015811ï¿½||Î´D||s,as advertised.(5) We use the triangle inequality followed by parts (1) and (4):||Î´P ||
âˆ—s
â‰¤ ||HÎ´D||
âˆ—s
  ||Î´P âˆ’ HÎ´D||
âˆ—s
â‰¤ 1.015811ï¿½||Î´D||
s
  0.524190ï¿½||Î´D||2
s
â‰¤ 1.024002ï¿½||Î´D||
s
.(6) We use the triangle inequality, part (4) and the bound ||Î´D||s â‰¤ 1/64:||HÎ´D   Î´P ||âˆ—
s â‰¤ 2||HÎ´D||âˆ—s   ||HÎ´D âˆ’ Î´P ||âˆ—s
â‰¤ 2.031622ï¿½||Î´D||s   0.524190ï¿½||Î´D||2
s
â‰¤ 2.031622ï¿½||Î´D||s   (52419/6400000)ï¿½||Î´D||s,which is the claimed bound.
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(7) Recall that âŒ©Î´D,xâŒª = 0, soHÎ´D âˆ’ H1Î´D =âŒ©s, HÎ´DâŒªâŒ©s, HsâŒªHs.Now, we bound using âŒ©s, Î´P âŒª = 0, triangle inequality and part (1):|âŒ©s, HÎ´DâŒª| = |âŒ©s, Î´P âŒª   âŒ©s, HÎ´D âˆ’ Î´P âŒª|â‰¤ 0   ||s||s||HÎ´D âˆ’ Î´P ||âˆ—
s â‰¤ 0.524190
âˆšÏ‘ï¿½||Î´D||2
s
and recall (Lemma B.2 part (7))âŒ©s, HsâŒª â‰¥ 0.984436Ï‘ï¿½and (Lemma B.2 part (5  http://www.nuokui.com/pdf/aSKd6-rPJ6nI.html  ))||Hs||âˆ—
s â‰¤ 1.015811
âˆšÏ‘ï¿½.Thus,||H1Î´D âˆ’ HÎ´D||âˆ—
s â‰¤ 0.540897ï¿½||Î´D||2s.
(8) We use the triangle inequality followed by parts (1) and (7).(9) We use the triangle inequality followed by parts (4), (7) and the fact that||Î´D||
s
â‰¤ 1/64.(10) We use the triangle inequality and parts (5) and (9).(11) We compute, using previous parts of this lemma,âŒ©Î´D,H1Î´DâŒª = âŒ©Î´D,Î´P âŒª   âŒ©Î´D,H1Î´D âˆ’ Î´P âŒªâ‰¥ 0.960803ï¿½||Î´D||2
s
âˆ’ ||Î´D||
s
||H1Î´D âˆ’ Î´P ||
âˆ—s
â‰¥ 0.960803ï¿½||Î´D||2
s âˆ’ 1.065087ï¿½||Î´D||3s
â‰¥ 0.944161ï¿½||Î´D||2
s.
DAppendix C. Evaluating the primal integral scalingGiven an oracle that can:â€¢ Evaluate F(x), F (x), and F (x) for any x âˆˆ int(K), andâ€¢ Compute, in some explicit form, the univariate polynomial t â†¦â†’ exp(âˆ’F(x   td)) forany x âˆˆ int(K) and d âˆˆ Rn,we describe how to compute the primal integral scaling(ï¿½âˆ« 1
0
F (x âˆ’ tÎ´P )dt)âˆ’1
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exactly. We do not claim that this method is practical or useful; in particular, it requires Ï‘evaluations of F . However, we later describe a slightly more practical variant that admitsconcrete bounds on approximation error.The method is a straightforward application of the theory of Gaussian quadrature. A readerunfamiliar with Gaussian quadrature might consult Section 3.6 of the excellent book by Stoerand Bulirsch [43].Notice that, with F = âˆ’lnp, we haveF =p (p ) âˆ’ ppp2.The denominator is a polynomial of degree 2Ï‘ and the numerator is a matrix whose entries arepolynomials of degree 2Ï‘ âˆ’ 2.Theorem C.1. There exist Ï‘ points r1,...,rÏ‘ in [0,1] and associated weights w1,...,wÏ‘ suchthat, if q is a univariate polynomial of degree less than 2Ï‘, thenâˆ« 1
0
q(t)p2(x âˆ’ tÎ´P )dt =
Ï‘
âˆ‘
i=1
wiq(ri).Proof. Notice that 1/p2(x âˆ’ tÎ´P ) is positive and bounded for t in [0,1]. In particular, it ismeasurable, all  http://www.nuokui.com/pdf/aSKd6-rPJ6nI.html   moments exist and are finite, and any nonnegative polynomial q such thatâˆ« 1
0
q(t)/p2(x âˆ’ tÎ´P )dt = 0 is itself zero. Thus a Gaussian quadrature rule with weight function1/p2(x âˆ’ tÎ´P ) exists. That is, there exist Ï‘ points r1,...,rÏ‘ in [0,1] and associated weightsw1,...,wÏ‘ such that, for any C2Ï‘ function f,âˆ£âˆ£âˆ£âˆ£âˆ£âˆ« 1
0
f(t)p2(x âˆ’ tÎ´P )dt âˆ’
Ï‘
âˆ‘
i=1
wif(ri)âˆ£âˆ£âˆ£âˆ£âˆ£â‰¤f(2Ï‘)(Ï„)(2Ï‘)!Cfor some 0 â‰¤ Ï„ â‰¤ 1 and some constant C â‰¥ 0 dependent on Ï‘.Take f = q; the derivative of order 2Ï‘ vanishes and hence the difference must be zero.DIndeed, the entries of p (p ) âˆ’ pp have degree 2Ï‘ âˆ’ 2; the primal integral scaling is exactly(ï¿½âˆ‘
i=1
wi(p (ri)(p (ri)) âˆ’ p(ri)p (ri)))
âˆ’1
.It may be practical to use a well-known Gaussian quadrature rule instead of the one arisingfrom 1/p2. The following theorem considers Gauss-Legendre quadrature of fixed order:
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Theorem C.2. If 1 â‰¤ k is an integer and ||Î´P ||x â‰¤ 1, thenâˆ£âˆ£âˆ£âˆ£âˆ£âˆ£âˆ£âˆ£âˆ£âˆ£Tâˆ’2
P
âˆ’ ï¿½
k
âˆ‘
i=1
wL
i F (x âˆ’ rLi Î´P )
âˆ£âˆ£âˆ£âˆ£âˆ£âˆ£âˆ£âˆ£âˆ£âˆ£xâ‰¤1(1 âˆ’ ||Î´P ||x)2max
tâˆˆ[0,1]
2||Î´P ||2k
xâˆ’tÎ´P
||F (x âˆ’ tÎ´P )||
k/2x
where rL
i are the order-k Gauss-Legendre nodes and wLi are the associated weights.
Proof. Note thatâˆ£âˆ£âˆ£âˆ£âˆ£âˆ£âˆ£âˆ£âˆ£âˆ£Tâˆ’2
P
âˆ’ ï¿½
k
âˆ‘
i=1
wL
i F (x âˆ’ rLi Î´P )
âˆ£âˆ£âˆ£âˆ£âˆ£âˆ£âˆ£âˆ£âˆ£âˆ£x= max
||h||â‰¤1
âˆ£âˆ£âˆ£âˆ£âˆ£Tâˆ’2
P [h, h] âˆ’ ï¿½k
âˆ‘
i=1
wL
i F (x âˆ’ rLi Î´P )[h, h]
âˆ£âˆ£âˆ£âˆ£âˆ£.Thus let h be the point at which this maximum is attained. By the error bound for Gaussianquadrature ([43], Theorem 3.6.24),(11)âˆ£âˆ£âˆ£âˆ£âˆ£Tâˆ’2
P [h, h] âˆ’ ï¿½k
âˆ‘
i=1
wL
i F (x âˆ’ rLi Î´P )[h, h]
âˆ£âˆ£âˆ£âˆ£âˆ£â‰¤ max
tâˆˆ[0,1]
âˆ£âˆ£âˆ£âˆ£F(2k 2)(x âˆ’ tÎ´P )[Î´P ,...,Î´P , h, h]âŒ©pk,pkâŒª(2k)!âˆ£âˆ£âˆ£  http://www.nuokui.com/pdf/aSKd6-rPJ6nI.html  âˆ£,where pk is the kth Legendre polynomial.A theorem of Gï¿½ler ([6], Theorem 4.2), together with the results from Appendix 1 of Nesterovand Nemirovskiiâ€™s book [29], shows that(12)âˆ£âˆ£F(2k 2)(x âˆ’ tÎ´P )[Î´P ,...,Î´P , h, h]âˆ£âˆ£ â‰¤ (2k   1)!||Î´P ||2k
xâˆ’tÎ´P
||h||2
xâˆ’tÎ´P
.Using self-concordance, we bound||h||
xâˆ’tÎ´P
â‰¤11 âˆ’ t||Î´P ||x||h||
x
=11 âˆ’ t||Î´P ||x.The squared L2 norm of the kth Legendre polynomial is 2/(2k   1). Substituting these and(12) into (11), we get the advertised bound.D
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