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KanGAL Report No. 200001Abstract. Multi-objective evolutionary algorithms which use non-dominated sort-ing and sharing have been mainly criticized for their (i) Ð—Â´Ð¡Ð–Ñ—ï¿½ computationalcomplexity (where Ð¡ is the number of objectives and Ð– is the population size),(ii) non-elitism approach, and (iii) the need for specifying a sharing parameter. Inthis paper, we suggest a non-dominated sorting based multi-objective evolution-ary algorithm (we called it the Non-dominated Sorting GA-II or NSGA-II) whichalleviates all the above three difficulties. Specifically, a fast non-dominated sort-ing approach with Ð—Â´Ð¡Ð–Ñ•ï¿½ computational complexity is presented. Second, aselection operator is presented which creates a mating pool by combining theparent and child populations and selecting the best (with respect to fitness andspread) Ð– solutions. Simulation results on five difficult test problems show thatthe proposed NSGA-II is able to find much better spread of solutions in all prob-lems compared to PAESâ€”another elitist multi-objective EA which pays specialattention towards creating a diverse Pareto-optimal front. Because of NSGA-IIâ€™slow computational requirements, elitist approach, and parameter-less sharing ap-proach, NSGA-II should find increasing applications in the years to come.
1 Introduction
Over the past decade, a number of multi-objective evolutionary algorithms (MOEAs)have been suggested [9,3,5,13]. The primary reason for this is their ability to findmultiple Pareto-optimal solutions in one single run. Since the principal reason why aproblem has a multi-objective formulation is because it   http://www.nuokui.com/pdf/ZIlrYzKSd8nI.html  is not possible to have a singlesolution which simultaneously optimizes all objectives, an algorithm that gives a largenumber of alternative solutions lying on or near the Pareto-optimal front is of greatpractical value.The Non-dominated Sorting Genetic Algorithm (NSGA) proposed in Srinivas andDeb [9] was one of the first such evolutionary algorithms. Over the years, the maincriticism of the NSGA approach have been as follows:High computational complexity of non-dominated sorting: The non-dominated sort-ing algorithm in use uptil now is Ð—Â´Ð¡Ð–Â¿Âµ which in case of large population sizes
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is very expensive, especially since the population needs to be sorted in every gen-eration.Lack of elitism: Recent results [12, 8] show clearly that elitism can speed up the per-formance of the GA significantly, also it helps to prevent the loss of good solutionsonce they have been found.Need for specifying the sharing parameter Ã— Ð¦: Traditional mechanisms of insur-ing diversity in a population so as to get a wide variety of equivalent solutions haverelied heavily on the concept of sharing. The main problem with sharing is that itrequires the specification of a sharing parameter (Ã— Ð¦). Though there has beensome work on dynamic sizing of the sharing parameter [4], a parameterless diver-sity preservation mechanism is desirable.In this paper, we address all of these issues and propose a much improved version ofNSGA which we call NSGA-II. From the simulation results on a number of difficult testproblems, we find that NSGA-II has a better spread in its optimized solutions than PAES[6]â€”another elitist multi-objective evolutionary algorithm. These results encourage theapplication of NSGA-II to more complex and real-world multi-objective optimizationproblems.
2 Elitist Multi-Objective Evolutionary Algorithms
In the study of Zitzler, Deb, and Theile [12], i  http://www.nuokui.com/pdf/ZIlrYzKSd8nI.html  t was clearly shown that elitism helps inachieving better convergence in MOEAs. Among the existing elitist MOEAs, Zitzlerand Thieleâ€™s [13] strength Pareto EA (SPEA), Knowles and Corneâ€™s Pareto-archivedevolution strategy (PAES) [6], and Rudolphâ€™s [8] elitist GA are well known.Zitzler and Thiele [13] suggested an elitist multi-criterion EA with the concept ofnon-domination in their strength Pareto EA (SPEA). They suggested maintaining anexternal population at every generation storing all non-dominated solutions discoveredso far beginning from the initial population. This external population participates ingenetic operations. At each generation, a combined population with the external andthe current population is first constructed. All non-dominated solutions in the com-bined population are assigned a fitness based on the number of solutions they dominateand dominated solutions are assigned fitness worse than the worst fitness of any non-dominated solution. This assignment of fitness makes sure that the search is directedtowards the non-dominated solutions. A deterministic clustering technique is used toensure diversity among non-dominated solutions. Although the implementation sug-gested in [13] is Ð—Â´Ð¡Ð–Â¿Âµ, with proper book-keeping the complexity of SPEA can bereduced to Ð—Â´Ð¡Ð–Â¾Âµ. An important aspect of this study and subsequent studies [12, 11]is that they clearly show the importance of introducing elitism in evolutionary multi-criterion optimization.Knowles and Corne [6] suggested a simple MOEA using an evolution strategy (ES).In their Pareto-archived ES (PAES) with one parent and one child, the child is comparedwith respect to the parent. If the child dominates the parent, the child is accepted as thenext parent and the iteration continues. On the other hand, if the parent dominates thechild, the child is discarded and a new mutated solution (a new child) is found. However,if the child and the pare  http://www.nuokui.com/pdf/ZIlrYzKSd8nI.html  nt do not dominate each other, the choice between the child and
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the parent considers the second objective of keeping diversity among obtained solutions.To maintain diversity, an archive of non-dominated solutions is maintained. The childis compared with the archive to check if it dominates any member of the archive. If yes,the child is accepted as the new parent and the dominated solution is eliminated fromthe archive. If the child does not dominate any member of the archive, both parent andchild are checked for their nearness with the solutions of the archive. If the child residesin a least crowded region in the parameter space among the members of the archive, itis accepted as a parent and a copy of added to the archive. Later, they suggested a multi-parent PAES with similar principles as above. Authors have calculated the worst casecomplexity of PAES for Ð– evaluations as Ð—Â´ Ð¡Ð–Âµ, where is the archive length. Sincethe archive size is usually chosen proportional to the population size Ð–, the overallcomplexity of the algorithm is Ð—Â´Ð¡Ð–Â¾Âµ.Rudolph [8] suggested, but did not simulate, a simple elitist multi-objective EAbased on a systematic comparison of individuals from parent and offspring popula-tions. The non-dominated solutions of the offspring population are compared with thatof parent solutions to form an overall non-dominated set of solutions, which becomesthe parent population of the next iteration. If the size of this set is not greater than thedesired population size, other individuals from the offspring population are included.With this strategy, he has been able to prove the convergence of this algorithm to thePareto-optimal front. Although this is an important achievement in its own right, the al-gorithm lacks motivation for the second task of maintaining diversity of Pareto-optimalsolutions. An explicit diversity preserving mechanism must be added  http://www.nuokui.com/pdf/ZIlrYzKSd8nI.html   to make it moreusable in practice. Since the determinism of the first non-dominated front is Ð—Â´Ð¡Ð–Â¾
Âµ,
the overall complexity of Rudolphâ€™s algorithm is also Ð—Â´Ð¡Ð–Â¾Âµ.
3 Elitist Non-dominated Sorting Genetic Algorithm (NSGA-II)
The non-dominated sorting GA (NSGA) proposed by Srinivas and Deb in 1994 hasbeen applied to various problems [10, 7]. However as mentioned earlier there have beena number of criticisms of the NSGA. In this section, we modify the NSGA approach inorder to alleviate all the above difficulties. We begin by presenting a number of differentmodules that form part of NSGA-II.3.1 A fast non-dominated sorting approachIn order to sort a population of size Ð– according to the level of non-domination, eachsolution must be compared with every other solution in the population to find if it isdominated. This requires Ð—Â´Ð¡Ð–Âµ comparisons for each solution, where Ð¡ is the num-ber of objectives. When this process is continued to find the members of the first non-dominated class for all population members, the total complexity is Ð—Â´Ð¡Ð–Â¾Âµ. At thisstage, all individuals in the first non-dominated front are found. In order to find theindividuals in the next front, the solutions of the first front are temporarily discountedand the above procedure is repeated. In the worst case, the task of finding of the secondfront also requires Ð—Â´Ð¡Ð–Â¾Âµ computations. The procedure is repeated to find the sub-sequent fronts. As can be seen the worst case (when there exists only one solution in
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each front) complexity of this algorithm is Ð—Â´Ð¡Ð–Â¿Âµ. In the following we describe a fastnon-dominated sorting approach which will require at most Ð—Â´Ð¡Ð–Â¾Âµ computations.First, for each solution we calculate two entities: (i) Ð¢ , the number of solutionswhich dominate the solution , and (ii) Ð› , a set of solutions which the solution domi-nates. The calculation o  http://www.nuokui.com/pdf/ZIlrYzKSd8nI.html  f these two entities requires Ð—Â´Ð¡Ð–Â¾Âµ comparisons. We identifyall those points which have Ð¢
Â¼ and put them in a list Â½. We call Â½ the current
front. Now, for each solution in the current front we visit each member () in its set Ð›and reduce its Ð¢ count by one. In doing so, if for any member the count becomeszero, we put it in a separate list Ð�. When all members of the current front have beenchecked, we declare the members in the list Â½ as members of the first front. We thencontinue this process using the newly identified front Ð� as our current front.Each such iteration requires Ð—Â´Ð–Âµ computations. This process continues till allfronts are identified. Since at most there can be Ð– fronts, the worst case complexity ofthis loop is Ð—Â´Ð–Â¾Âµ. The overall complexity of the algorithm now is Ð—Â´Ð¡Ð–Â¾Âµ Â·Ð—Â´Ð–Â¾Âµor Ð—Â´Ð¡Ð–Â¾Âµ.It is worth mentioning here that although the computational burden has reducedfrom Ð—Â´Ð¡Ð–Â¿Âµ to Ð—Â´Ð¡Ð–Â¾Âµ by performing systematic book-keeping, the storage hasincreased from Ð—Â´Ð–Âµ to Ð—Â´Ð–Â¾Âµ in the worst case.The fast non-dominated sorting procedure which when applied on a population Ð˜returns a list of the non-dominated fronts .
fast-nondominated-sort(Ð˜)
for each Ð¤ Â¾ Ð˜for each Ð¥ Â¾ Ð˜if Â´Ð¤Ð¥Âµ thenif Ð¤ dominates Ð¥ thenÐ›Ð¤Ð›Ð¤Ð¥include Ð¥ in Ð›Ð¤else if Â´Ð¥Ð¤Âµ thenif Ð¤ is dominated by Ð¥ thenÐ¢Ð¤Ð¢Ð¤ Â· Â½increment Ð¢Ð¤if Ð¢Ð¤
Â¼ then
if no solution dominates Ð¤ then
Â½Â½
Ð¤Ð¤ is a member of the first front
Â½
while
Ð�
for each Ð¤ Â¾for each member Ð¤ infor each Ð¥ Â¾ Ð›Ð¤modify each member from the set Ð›Ð¤Ð¢Ð¥Ð¢Ð¥  Â½decrement Ð¢Ð¥ by oneif Ð¢Ð¥
Â¼ then Ð� Ð� Ð¥
if Ð¢Ð¥ is zero, Ð¥ is a member of a list Ð�
Â· Â½
Ð�
current front is formed with all members of Ð�3.2 Density EstimationTo get an estimate of the density of solutions surrounding a particular point in the pop-ulation we take the average distance of the two points on either side of this point alongeach of the  http://www.nuokui.com/pdf/ZIlrYzKSd8nI.html   objectives. This quantity
Ð§Ð¨ Ð¢ serves as an estimate of the size of the
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largest cuboid enclosing the point without including any other point in the population(we call this the crowding distance). In Figure 1, the crowding distance of the -th so-lution in its front (marked with solid circles) is the average side-length of the cuboid(shown with a dashed box). The following algorithm is used to calculate the crowding
Cuboid
ff
12
ii-1i 10lFig. 1. The crowding distance calculation is shown.
distance of each point in the set Ð‘ :
crowding-distance-assignment(Ð‘)
Ð 
Ð‘
number of solutions in Ð‘for each , set Ð‘ â„„ Ð§Ð¨ Ð¢
Â¼
initialize distancefor each objective Ð¡
Ð‘ = sort(Ð‘ Ð¡Âµ
sort using each objective value
Ð‘ Ð…â„„ Ð§Ð¨ Ð¢ = Ð‘ Ð â„„ Ð§Ð¨ Ð¢ = Â½
so that boundary points are always selectedfor
Â¾ to Â´Ð   Ð…ï¿½
for all other points
Ð‘ â„„ Ð§Ð¨ Ð¢ = Ð‘ â„„ Ð§Ð¨ Ð¢   Â´Ð‘ Â· Ð…â„„ Ð¡   Ð‘  Ð…â„„ Ð¡Âµ
Here Ð‘ â„„ Ð¡ refers to the Ð¡-th objective function value of the -th individual inthe set Ð‘. The complexity of this procedure is governed by the sorting algorithm. Inthe worst case (when all solutions are in one front), the sorting requires Ð—Â´Ð¡Ð– Ð Ð£ Ð–Âµcomputations.3.3 Crowded Comparison OperatorThe crowded comparison operator ( Ð¢) guides the selection process at the variousstages of the algorithm towards a uniformly spread out Pareto-optimal front. Let usassume that every individual in the population has two attributes.1. Non-domination rank (Ð¦ Ð¢)2. Local crowding distance ( Ð§Ð¨ Ð¢)We now define a partial order Ð¢ as :
Ð¢
if (Ð¦ Ð¢
Ð¦ Ð¢) or ((Ð¦ Ð¢ = Ð¦ Ð¢) and ( Ð§Ð¨ Ð¢Ð§Ð¨ Ð¢) )
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That is, between two solutions with differing non-domination ranks we prefer thepoint with the lower rank. Otherwise, if both the points belong to the same front thenwe prefer th  http://www.nuokui.com/pdf/ZIlrYzKSd8nI.html  e point which is located in a region with lesser number of points (the sizeof the cuboid inclosing it is larger).3.4 The Main LoopInitially, a random parent population Ð˜Â¼ is created. The population is sorted based onthe non-domination. Each solution is assigned a fitness equal to its non-dominationlevel (1 is the best level). Thus, minimization of fitness is assumed. Binary tournamentselection, recombination, and mutation operators are used to create a child populationÐ™Â¼ of size Ð–. From the first generation onward, the procedure is different. The elitismprocedure for Ð¨
Â½ and for a particular generation is shown in the following:
ÐšÐ¨Ð˜Ð¨Ð™Ð¨combine parent and children population
fast-nondominated-sort(ÐšÐ¨)
Â´ Â½
Â¾
Âµ, all non-dominated
fronts of ÐšÐ¨until Ð˜Ð¨ï¿½Ð…Ð–till the parent population is filled
crowding-distance-assignment( ) calculate crowding distance in
Ð˜Ð¨ï¿½Ð…Ð˜Ð¨ï¿½Ð…include -th non-dominated front in the parent popSort(Ð˜Ð¨ï¿½Ð…
Ð¢)
sort in descending order using Ð¢Ð˜Ð¨ï¿½Ð…Ð˜Ð¨ï¿½Ð… Â¼ Ð–â„„choose the first N elements of Ð˜Ð¨ï¿½Ð…Ð™Ð¨ï¿½Ð… = make-new-pop(Ð˜Ð¨ï¿½Ð…)use selection,crossover and mutation to createÐ¨Ð¨ Â· Â½a new population Ð™Ð¨ï¿½Ð…First, a combined population ÐšÐ¨Ð˜Ð¨Ð™Ð¨ is formed. The population ÐšÐ¨ will beof size Â¾Ð–. Then, the population ÐšÐ¨ is sorted according to non-domination. The newparent population Ð˜Ð¨ï¿½Ð… is formed by adding solutions from the first front till the sizeexceeds Ð–. Thereafter, the solutions of the last accepted front are sorted according to
Ð¢ and the first Ð– points are picked. This is how we construct the population Ð˜Ð¨ï¿½Ð… of
size Ð–. This population of size Ð– is now used for selection, crossover and mutation tocreate a new population Ð™Ð¨ï¿½Ð… of size Ð–. It is important to note that we use a binarytournament selection operator but the selection criterion is now based on the nichedcomparison operator Ð¢.Let us now look at the complexity of one iteration of th  http://www.nuokui.com/pdf/ZIlrYzKSd8nI.html  e entire algorithm. Thebasic operations being performed and the worst case complexities associated with areas follows:1. Non-dominated sort is Ð—Â´Ð¡Ð–Â¾Âµ,2. Crowding distance assignment is Ð—Â´Ð¡Ð– Ð Ð£ Ð–Âµ, and3. Sort on Ð¢ is Ð—Ò‘Ñ•Ð– Ð Ð£ Ò‘Ñ•Ð–ï¿½ï¿½.As can be seen, the overall complexity of the above algorithm is Ð—Â´Ð¡Ð–Â¾Âµ.The diversity among non-dominated solutions is introduced by using the crowdingcomparison procedure which is used in the tournament selection and during the popula-tion reduction phase. Since solutions compete with their crowding distance (a measure
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of density of solutions in the neighborhood), no extra niching parameter (such as Ã— Ð¦needed in the NSGA) is required here. Although the crowding distance is calculated inthe objective function space, it can also be implemented in the parameter space, if sodesired [1].It is interesting to note here the connection of this algorithm with the algorithmproposed by Rudolph [8]. Since the non-dominated front finding algorithm used inRudolphâ€™s algorithm is Ð—Â´Ð¡Ð–Â¾Âµ for each front, Rudolph controlâ€™s the complexity ofhis algorithm by working with just the first few fronts in the parent and the child pop-ulations and treating the rest of the individuals in the child population at par. With theavailability of a fast non-domination sorting algorithm we can now afford to combinethe parent and child populations and do a complete sort to identify all the fronts andallocate fitness accordingly.
4 Results
We compare NSGA-II with PAES on five test problems (minimization of both objec-tives):MOP2:
Â½Ò‘Ð¬ï¿½ Â½   Ð¬Ð¤ ï¿½Ð˜Ð¢Â½ Ð¬   Â½Ð¤Ð¢Â¾
  Ð¬Â½ Ð¬Â¾ Ð¬Â¿
Â¾Ò‘Ð¬ï¿½ Â½   Ð¬Ð¤ ï¿½Ð˜Ð¢Â½ Ð¬ Â·Â½Ð¤Ð¢Â¾
(1)MOP3:
Â½Ò‘Ð¬ï¿½
Â¢
Ð…ï¿½Ò‘ Â½   Â½Âµ
Â¾
Â· Â´ Â¾   Â¾Âµ
Â¾Â£Â¾Ò‘Ð¬ï¿½
Â¢
Â´Ð¬ Â· Ñ—ï¿½Â¾ Â· Â´Ð Â· Ð…ï¿½Â¾Â£
(2)where
Â½
Â¼ Ã— Ð¢ Â½  Â¾ Ð£Ð§ Â½ Â· Ã— Ð¢ Â¾  Â½ Ð£Ð§ Â¾
Â¾
Â½ Ã— Ð¢ Â½  Ð£Ð§ Â½ Â· Â¾ Ã— Ð¢ Â¾  Â¼ Ð£Ð§ Â¾
Â½
Â¼ Ã— Ð¢ Ð¬  Â¾ Ð£Ð§Ð¬ Â·  http://www.nuokui.com/pdf/ZIlrYzKSd8nI.html   Ã— Ð¢ Ð  Â½ Ð£Ð§Ð
Â¾
Â½ Ã— Ð¢ Ð¬  Ð£Ð§ Ð¬ Â· Â¾ Ã— Ð¢ Ð  Â¼ Ð£Ð§Ð
MOP4:
Â´
Â½Ò‘Ð¬ï¿½
Ð˜Ð¢ Â½
Â½
 Ð…Ñ˜ Ð¬Ð¤  Â¼ Â¾Ð¥
Ð¬Â¾ Â· Ð¬Â¾
ï¿½Ð…
  Ð¬Â½ Ð¬Â¾ Ð¬Â¿
Â¾Ò‘Ð¬ï¿½
Ð˜Ð¢
Â½
 
Ð¬ Â¼ Â· Ã— Ð¢Ò‘Ð¬ ÂµÂ¿Â¡(3)EC4:
Â´
Â½Ò‘Ð¬ï¿½ Ð¬Â½
Â¼
Ð¬Â½
Â½
Â¾Ò‘Ð¬ï¿½
Â½  
Ð¥
Ð¬Ð…
  Ð¬Â¾
Ð¬Ð…Ñ˜(4)where
Ò‘Ð¬ï¿½ Ð…ï¿½
Ð…Ñ˜Â¾
 
Ð¬Â¾  Ð…Ñ˜ Ð£Ð§Ò‘ Ð¬ Âµ
Â¡
EC6:
Â½Ò‘Ð¬ï¿½ Â½   Ð¬Ð¤Ò‘  Ð¬Â½Âµ Ã— Ð¢ Â´ Ð¬Â½Âµ Â¼
Ð¬
Â½Â½Ð…Ñ˜
Â¾Ò‘Ð¬ï¿½
 
Â½  Â´ Â½ÂµÂ¾Â¡
(5)where
Ò‘Ð¬ï¿½ Ð…ï¿½
Ð…Ñ˜Â¾
Ð¬
Ñ˜Ñ•
Since the diversity among optimized solutions is an important matter in multi-objective optimization, we devise a measure based on the consecutive distances among
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the solutions of the best non-dominated front in the final population. The obtained setof the first non-dominated solutions are compared with a uniform distribution and thedeviation is computed as follows:Â¡
Â½Â½
 
Â½
(6)In order to ensure that this calculation takes into account the spread of solutions in theentire region of the true front, we include the boundary solutions in the non-dominatedfront Â½. For discrete Pareto-optimal fronts, we calculate a weighted average of theabove metric for each of the discrete regions. In the above equation,is the Euclideandistance between two consecutive solutions in the first non-dominated front of the finalpopulation in the objective function space. The parameteris the average of thesedistances.The deviation measure Â¡ of these consecutive distances is then calculated for eachrun. An average of these deviations over 10 runs is calculated as the measure (Â¡) forcomparing different algorithms. Thus, it is clear that an algorithm having a smaller Â¡is better, in terms of its ability to widely spread solutions in the obtained front.For all test problems and with NSGA-II, we use a population of size 100, a  http://www.nuokui.com/pdf/ZIlrYzKSd8nI.html   crossoverprobability of 0.8, a mutation probability of Â½ Ð¢ (where Ð¢ is the number of variables).We run NSGA-II for 250 generations. The variables are treated as real numbers andthe simulated binary crossover (SBX) [2] and the real-parameter mutation operator areused. For the (1 1)-PAES, we have used an archive size of 100 and depth of 4 [6].A mutation probability of Â¼ Ñ˜Ð… is used. In order to make the comparisons fair, we haveused 25,000 iterations in PAES, so that total number of function evaluations in NSGA-IIand in PAES are the same.Table 1 shows the deviation from an ideal (uniform) spread (Â¡) and its variancein 10 independent runs obtained using NSGA-II and PAES. We show two columnsfor each test problem. The first column presents the Â¡ value of 10 runs and the secondcolumn shows its variance. It is clear from the table that in all five test problems NSGA-II has found much smaller Â¡, meaning that NSGA-II is able to find a distribution ofsolutions closer to a uniform distribution along the non-dominated front. The variancecolumns suggest that the obtained Â¡ values are consistent in all 10 runs.
Table 1. Comparison of mean and variance of deviation measure Â¡obtained using NSGA-II andPAESAlgorithmMOP2MOP3MOP4EC4EC6NSGA-II 0.361 0.00068 0.445 0.00043 0.387 0.00164 0.383 0.00099 0.365 0.01613PAES 1.609 0.00671 1.341 0.00495 1.087 0.00687 1.563 0.05723 1.195 0.05151
In order to have a better understanding of how these algorithms are able to spread so-lutions over the non-dominated front, we present the entire non-dominated front found
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by NSGA-II and PAES in two of the above five test problems. Figures 2 and 3 showthat NSGA-II is able to find a much better distribution than PAES on MOP4.In EC4, converging to the global Pareto-optimal front is a difficult task. As reportedelsewhere [11], SPEA converged to a front with
Â¼ in at least one out   http://www.nuokui.com/pdf/ZIlrYzKSd8nI.html  of five
different runs. With NSGA-II, we find a front with
Â¿ in one out of five different
-12-10-8-6-4-20-20-19-18-17-16-15-14f_2f_1NSGA-II
Fig. 2. Non-dominated solutions obtained us-ing NSGA-II on MOP4.
-12-10-8-6-4-20-20-19-18-17-16-15-14f_2f_1PAES
Fig. 3. Non-dominated solutions obtained us-ing PAES on MOP4.
runs.Figure 4 shows the non-dominated solutions obtained using NSGA-II and PAES forEC6. Once again, it is clear that the NSGA-II is able to better distribute its populationalong the obtained front than PAES. It is worth mentioning here that with similar num-ber of function evaluations, SPEA, as reported in [11], had found only five differentsolutions in the non-dominated front.
5 Conclusions
In this paper, we have proposed a computationally fast elitist multi-objective evolution-ary algorithm based on non-dominated sorting approach. On five difficult test problemsborrowed from the literature, it has been found that the proposed NSGA-II outperformsPAESâ€”another multi-objective EA with the explicit goal of preserving spread on thenon-dominated front. With the properties of a fast non-dominated sorting procedure, anelitist strategy, and a parameterless approach, NSGA-II should find increasing attentionand applications in the near future.
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00.20.40.60.811.21.40.30.40.50.60.70.80.91f_2f_1Pareto-Optimal FrontNSGA-IIPAES
Fig. 4. Obtained non-dominated solutions with NSGA-II and PAES on EC6.
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