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Abstract
The applications of texture mapping in computer graphics and image distortion (warping) in imageprocessing share a core of fundamental techniques. We explore two of these techniques, the two-dimensional geometric mappings that arise in the parameterization and projection of textures ontosurfaces, and the filters necessary to eliminate aliasing when an image is resampled during texturemapping or warping. With respect to mappings, this work presents a tutorial on three commonclasses of mapping: the affine, bilinear, and projective. For resampling, this work develops a newtheory describing the ideal, space variant antialiasing filter for signals warped and resampled ac-cording to an arbitrary mapping. Efficient implementations of the mapping and filtering techniquesare discussed and demonstrated.Page 4Page 5
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Chapter 1
Introduction
In this thesis, we are interested in the modeling and rendering problems common to texture m  http://www.nuokui.com/pdf/Wn_zBHZg8iPI.html  appingand image warping. We begin by reviewing the goals and applications of texture mapping and imagewarping.
1.1 Texture Mapping
Texture mapping is a shading technique for image synthesis in which a texture image is mapped ontoa surface in a three dimensional scene, much as wallpaper is applied to a wall [Catmull74], [Blinn-Newell76], [Heckbert86b]. If we were modeling a table, for example, we might use a rectangularbox for the table top, and four cylinders for the legs. Unadorned, this table model would look quitedull when rendered. The realism of the rendered image can be enhanced immensely by mapping awood grain pattern onto the table top, using the values in the texture to define the color at eachpoint of the surface. The advantage of texture mapping is that it adds much detail to a scenewhile requiring only a modest increase in rendering time. Texture mapping does not affect hiddensurface elimination, but merely adds a small incremental cost to the shading process. The techniquegeneralizes easily to curved surfaces [Catmull74].
Texture mapping can be used to define many surface parameters besides color. These include theperturbation of surface normal vectors to simulate bumpy surfaces (bump mapping), transparencymapping to modulate the opacity of a translucent surface, specularity mapping to vary the glossinessof a surface, and illumination mapping to model the distribution of incoming light in all directions.These applications are surveyed, and their original literature is cited, in [Carey-Greenberg85].
In all of the varieties of texture mapping mentioned above, geometric mappings are fundamental.Two-dimensional mappings are used to define the parameterization of a surface and to describe thetransformation between the texture coordinate system and the screen coordinate system. In texturemapping applications the latter mapping is usually fully determined by the 3-D transforma  http://www.nuokui.com/pdf/Wn_zBHZg8iPI.html  tiondefined by the camera, the modeling transformations describing the geometry of the scene, and theparameterization that maps a texture onto a surface. There are many texture representations, butin this work we restrict ourselves to the most common: discrete 2-D images.
When rendering a textured surface it is necessary to sample the texture image to producethe screen image. Except for scenes viewed with parallel projections, texture mappings are non-
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affine, so they have nonuniform resampling grids, as shown in figure 1.1 (affine mappings are thosecomposed of rotations, scales, and translations). Antialiasing non-affine texture mappings requiresa space variant texture filter, however. Such filters change shape as a function of position, and aremuch more difficult to implement than space invariant filters. Space variant filters are particularlyimportant for texture mapping applications because of the extreme range of scales involved in many3-D scenes. (These issues are explored in detail in chapter 3.)
1.2
Image Warping
Image warping is the act of distorting a source image into a destination image according to amapping between source space (u, v) and destination space (x, y). The mapping is usually specifiedby the functions x(u, v) and y(u, v). (We use the term "warp" instead of its synonyms "distortion"and â€œtransformation" because of its conciseness and specificity: "warp" specifically suggests amapping of the domain of an image, while "transformation" can mean a mapping of the imagerange as well).
Image warping is used in image processing primarily for the correction of geometric distortionsintroduced by imperfect imaging systems [Gonzalez-Wintz87]. Camera lenses sometimes introduce.pincushion or barrel distortions, perspective views introduce a projective distortion, and othernonlinear optical components can create more complex distortions. In ima  http://www.nuokui.com/pdf/Wn_zBHZg8iPI.html  ge processing, we doimage warping typically to remove the distortions from an image, while in computer graphics weare usually introducing one. Image warps are also used for artistic purposes and special effects ininteractive paint programs. For image processing applications, the mapping may be derived givena model of the geometric distortions of a system, but more typically the mapping is inferred froma set of corresponding points in the source and destination images. The point correspondence canbe automatic, as for stereo matching, or manual, as in paint programs. Most geometric correctionsystems support a limited set of mapping types, such as piecewise affine, bilinear, biquadratic, orbicubic mappings. Such mappings are usually parameterized by a grid of control points. A surveyof mapping and filtering techniques for image processing is found in [Wolberg88].
The appropriate antialiasing filter for non-affine mappings in image warping is, in general, spacevariant, just as for texture mapping. Filter quality and efficiency is less of a problem for imageprocessing, however, since the mappings used there usually have a more uniform sampling grid thanthose for texture mapping. When it is known a priori that the sampling grid is nearly uniform, afixed "interpolation" filter can be used with good results [Gonzalez-Wintz87]. Uniform resampling(often known as "sampling rate conversion") is a fairly common task for 1-D signals such as audio[Crochiere-Rabiner83]. Nonuniform sampling has received much less attention to date.
1.3
Organization of this Thesis
This thesis is split into two halves: chapter 2 contains a discussion of basic 2-D mappings, andchapter 3 develops and applies a theory for resampling filters. There are also two appendices: thefirst contains source code for several mapping tasks, and the second summarizes the mathematics
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Figure 1.1: a) A textured surface viewed in perspective. b) Nonuniform grid of texture samples inthe screen.
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of ellipses relevant to filtering.
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Chapter 2
Two-Dimensional Mappings
In our discussion of mappings we restrict ourselves, for the most part, to 2-D images mappedto planar surfaces. The simplest classes of 2-D mappings are the affine, bilinear, and projectivetransformations. These mappings are well known in mathematics and have been used for years incomputer graphics. Despite their fundamental importance, however, the latter two mappings havereceived little attention in the computer graphics literature. Other aspects of texture mapping andimage warping, such as texture synthesis and filtering, have received much more attention, probablybecause they have more apparent impact on image quality than simple 2-D mappings.
We believe that texture mapping would be more common in rendering systems if basic 2-Dmappings were more widely understood. In this work we hope to revive appreciation for one classof mappings in particular, the projective mapping.
2.1 Naive Texture Mapping
2.1.1
Coordinate Systems
To discuss texture mapping, we need to define several coordinate systems. Texture space is the2-D space of surface textures and object space is the 3-D coordinate system in which 3-D geometrysuch as polygons and patches are defined. Typically, a polygon is defined by listing the object.space coordinates of each of its vertices. For the classic form of texture mapping with which we areconcerned, texture coordinates (u, v) are assigned to each vertex. World space is a global coordinatesystem that  http://www.nuokui.com/pdf/Wn_zBHZg8iPI.html   is related to each object's local object space using 3-D modeling transformations(translations, rotations, and scales). 3-D screen space is the 3-D coordinate system of the display,a perspective space with pixel coordinates (x, y) and depth z (used for z-buffering). It is related toworld space by the camera parameters (position, orientation, and field of view). Finally, 2-D screenspace is the 2-D subset of 3-D screen space without z. When we use the phrase "screen space" byitself we mean 2-D screen space.
The correspondence between 2-D texture space and 3-D object space is called the parameteri-zation of the surface, and the mapping from 3-D object space to 2-D screen space is the projectiondefined by the camera and the modeling transformations (figure 2.1). Note that when we are ren-dering a particular view of a textured surface, it is the compound mapping from 2-D texture space
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2-D texture space
parameterization
compoundmapping
3-D object space
projection
2-D screen space
Figure 2.1:
The compound mapping is the composition of the surface parameterization and theviewing projection.
to 2-D screen space that is of interest. For resampling purposes, once the 2-D to 2-D compoundmapping is known, the intermediate 3-D space can be ignored. The compound mapping in texturemapping is an example of an image warp, the resampling of a source image to produce a destinationimage according to a 2-D geometric mapping.
2.1.2
A Naive Implementation of Texture Mapping
To demonstrate the subtleties of 2-D mappings, we outline here an algorithm for texture mappingwithin a z-buffer polygon renderer [Rogers 85]. This simple algorithm will produce a number ofvisual flaws that are quite instructive.
We begin by defining the object space coordinates (x, y, z) and texture coordinates (u, v) ateach vertex of each polygon. The polygons are  http://www.nuokui.com/pdf/Wn_zBHZg8iPI.html   transformed to screen space, yielding x, y, and zcoordinates for each vertex. We will need to compute z, u, and v at each pixel, and we would liketo do this with fast, incremental techniques. It is well known that the perspective transformationmaps lines to lines and planes to planes [Foley-van Dam 82], so linear interpolation is appropriatefor computing z. Linear interpolation is also used in Gouraud and Phong shading, so it might seemreasonable to interpolate the texture coordinates (u, v) linearly as well. Following this reasoning,we scan convert the polygon into pixels by linearly interpolating r, z, u, and v along the left andright sides of the polygon and linearly interpolating z, u, and v across each scan line. Havingtexture coordinates (u, v) at each pixel, we can sample the texture array and use the resulting coloras the screen pixel value.
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The inner loop of this primitive texture mapper will then be:
for x = xleft to xright
if z < ZBUF [x,y] thenZBUF [x,y] = Z
(r, g, b) = TEX [u,v]
SCR[x,y] = (r, g, b)
z = z dz
(u, v) = (u, v)   (du, dv)
is new point closer?update z-buffer
sample texture
write screen
where (a, b, c) denotes a vector. The increment values dz, du, and dv are calculated once per scanline. This code uses the texture as the output pixel color (i.e. no lighting effects) and it pointsamples the texture (i.e. no filtering).
Close examination of figure 2.2 reveals some of the flaws in the algorithm above. Aliasing(not visible here) would result from a high frequency texture. This can be eliminated by filteringan area surrounding the texture point (u, v) rather than sampling just a single pixel [Feibush-Levoy-Cook80], [Heckbert86b]. More fundamentally, however, these images do not exhibit theforeshortening we expect from perspective (compare with figure 2.3). The textured polygon alsoshows disturbing d  http://www.nuokui.com/pdf/Wn_zBHZg8iPI.html  iscontinuities along horizontal lines passing through each vertex. These discon-tinuities are artifacts of the linear interpolation of u and v. In animation, the horizontal rippleswill move distractingly as the camera rolls, since the ripples are rotation variant, and the lack offoreshortening will make the texture appear to swim across a surface. As we will see, this naivetexture mapper is correct only for affine mappings.
These problems occur because the texture transformation effected by our linear interpolation ofu and v is inconsistent with the geometry transformation used to transform the vertices to screenspace. Linear interpolation of (u, v) in a scan line algorithm computes a bilinear mapping, whilethe actual image warp defined by perspective is a projective mapping. One ad hoc solution tothis inconsistency is to continue with linear interpolation, but to finely subdivide the polygon. Ifthe texture coordinates are correctly computed for the vertices of the new polygons, the resultingpicture will exhibit less rippling. It is hard to know how finely to subdivide the polygon, however.We can find more satisfactory, theoretically correct, solutions to these problems by studying simple,generic 2-D mappings. Later we will apply the generic techniques to texture mapping.
2.2
Simple Two-Dimensional Mappings
There is a limitless variety of possible 2-D mappings. Mappings for applications of texture mappingor image warping must satisfy the needs of both the user and the implementer of the system.For a designer modeling a 3-D scene or the user of image distortion software, one of the mostimportant criteria for selecting a mapping is predictability. One form of predictability present inthe simplest mappings is the preservation of straight lines. If a texture mapping or image warpbends lines then the results are less predictable than those of a line-preserving mapping. Otherdesirable pro  http://www.nuokui.com/pdf/Wn_zBHZg8iPI.html  perties are the preservation of equispaced points, angles [Fiume-Fournier-Canale87],and areas. The implementer of such a system seeks efficient, incremental computations and well-behaved functions (single-valued and invertible). We will see how well the simplest 2-D mappingsmeet these criteria.
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Figure 2.2: Left: A checkerboard texture. Right: Image produced by naive texture mapper usinglinear interpolation of u, v. Note horizontal lines of discontinuity passing through vertices (indicatedwith dashed lines).
Figure 2.3: Image produced by projective warp algorithm of ï¿½2.3.5 using rational linear interpolationof texture coordinates. Note proper foreshortening.
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A two-dimensional mapping is a mapping (transformation) that distorts a 2-D source space intoa 2-D destination space. It maps a source point (u, v) to a destination point (x, y), according tothe functions x(u,v) and y(u,v). We will discuss three classes of mappings: affine, bilinear, andprojective.
Homogeneous Notation
The homogeneous representation for points provides a consistent notation for affine and projectivemappings. Homogeneous notation was used in projective geometry [Maxwell46], [Coxeter78] longbefore its introduction to computer graphics [Roberts66]. The homogeneous notation is oftenmisunderstood so we will take a moment to clarify its use and properties.
In familiar Euclidean geometry we represent points of the real plane Rï¿½ by vectors of the form(x, y). Projective geometry deals with the projective plane, a superset of the real plane, whose ho-mogeneous coordinates are (x', y', w). In projective geometry the 2-D real point (x, y) is representedby the homogeneous vector p = (x', y', w) = (xw, yw, w), where w is an arbitrary nonzero number.Vectors of the form (xw, yw, w) for w 0 form the equivalence class of homogeneous representationsfor the real point (x, y).   http://www.nuokui.com/pdf/Wn_zBHZg8iPI.html  To recover the actual coordinates from a homogeneous vector, we simplydivide by the homogeneous component; e.g., the homogeneous vector p = (xw, yw, w) = (x', y', w)represents the actual point (x, y) = (x'/w, y'/w). This division, a projection onto the w= 1 plane,cancels the effect of scalar multiplication by w. When representing real points with homogeneousnotation we could use any nonzero w, but it is usually most convenient to choose w = 1 so thatthe real coordinates can be recovered without division. Projective space also includes the points atinfinity: vectors of the form (x', y', 0), excluding (0,0,0). The points at infinity lie on the line atinfinity. We will see later how augmentation of the real plane by these points simplifies projectivegeometry.
-
In homogeneous notation, 2-D points are represented by 3-vectors and 3-D points are representedby 4-vectors. For affine and projective mappings, we denote points in source space by ps (u', v', q)and points in the destination space by pd = (x', y', w).
2.2.1
Affine Mappings
Affine mappings include scales, rotations, translations, and shears; they are linear mappings plus atranslation [Foley-van Dam82]. Formally, a mapping T(x) is linear iff T(x   y) = T(x)   T(y) andT(ax) aT(x) for any scalar a, and a mapping T(x) is affine iff there exists a constant c and alinear mapping L(x) such that T(x) = L(x)   c for all x. Obviously, linear mappings are a subsetof affine mappings.
A general 2-D affine mapping may be written algebraically as:
Pd = PsMsd
a
d 0
(x y 1) = (u v 1) b e 0
c f
1
Transform matrices are denoted Mab where a is the initial coordinate system and b is the finalcoordinate system. Notice that we have chosen w = q = 1 without loss of generality. The 3 x 3
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Figure 2.4: Affine warps of image at left.
matrix Msd has 6 degree  http://www.nuokui.com/pdf/Wn_zBHZg8iPI.html  s of freedom. Geometrically, the vectors (a, d) and (b, e) are basis vectorsof the destination space, and (c, f) is the origin.
As shown in figure 2.4, affine mappings preserve parallel lines and preserve equispaced pointsalong lines (meaning that equispaced points along a line in the source space transform to equispacedpoints along a line in the destination space, although the spacing in the two coordinate systemsbe different). We can invert an affine mapping to find the destination-to-source transformationsimply by inverting the mapping matrix (iff Mï¿½d has an inverse). Similarly, affine mappings maybe composed by concatenating their matrices.
may
Since an affine mapping has 6 degrees of freedom, it may be defined geometrically by specify-ing the source and destination coordinates of three points. The mapping and its inverse will benondegenerate if the three points are noncollinear in both spaces. To infer the affine transformmatrix from a three point correspondence that maps (uk, vk) to (xk, yk) for k = 0, 1, 2, we solve thefollowing matrix equation for Msd:
- (
Md = M&Msd
TO Ð£Ð¾21 Y1 112 Y2 1
1
ÎºÎ± VO 1
Õ¡Õ¬ V1 1Õ´Õ· 02 1
a d 0
ÑŒ
0
c f
f 1
The above relation is 6 scalar equations in 6 unknowns a-f, but the system simplifies easily intotwo 3 x 3 systems, one for r and one for y.
Affine mappings can map any triangle in source space into any triangle in destination space,or map a source rectangle into a destination parallelogram, but no more general distortions arepossible. To warp a rectangle into a general quadrilateral, we will need a bilinear, projective, orsome other more complex mapping.
2.2.2
Bilinear Mappings
Bilinear mappings are most commonly defined as a mapping of a square into a quadrilateral. Asshown in figure 2.5, this mapping can be computed by linearly interpolating by fraction u along thetop and   http://www.nuokui.com/pdf/Wn_zBHZg8iPI.html  bottom edges of the quadrilateral, and then linearly interpolating by fraction v between
14
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