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Abstractâ€”Structured-light systems are simple and effectivetools to acquire 3D models. Built with off-the-shelf components,a data projector and a camera, they are easy to deploy andcompare in precision with expensive laser scanners. But sucha high precision is only possible if camera and projector areboth accurately calibrated. Robust calibration methods are wellestablished for cameras but, while cameras and projectors canboth be described with the same mathematical model, it is notclear how to adapt these methods to projectors. In consequence,many of the proposed projector calibration techniques makeuse of a simplified model, neglecting lens distortion, resultingin loss of precision. In this paper, we present a novel methodto estimate the image coordinates of 3D points in the projectorimage plane. The method relies on an uncalibrated camera andmakes use of local homographies to reach sub-pixel precision.As a result, any camera model can be used to describe theprojector, including the extended pinhole model with radialand tangential distortion coefficients, or even those with morecomplex lens distortion models.Keywords-structured-light; camera; projector; calibration;local homography;
I. INTRODUCTIONStructured-light systems are the preferred choice for do-it-yourself 3D scanning applications. They are easy to deploy,only an off-the-shelf data projector and camera are required,and they are very accurate when implemented carefully. Aprojector-camera pair works as a stereo system, with theadvantage that a properly chosen projected pattern simplifiesthe task of finding point correspondences. In such systems,projectors are modeled as inverse cameras and all consid-erations known for passive stereo systems may be applied  http://www.nuokui.com/pdf/Vngc4C4fnUHI.html  with almost no change. However, the calibration proceduremust be adapted to the fact that projectors cannot directlymeasure the pixel coordinates of 3D points projected ontothe projector image plane as cameras do.Viewpoint, zoom, focus, and other parameters ought to beadjusted, both in projector and camera, to match each targetobject size and scanning distance; invalidating any previouscalibration. Therefore, structured-light systems must be cali-brated before each use in order to guaranteed the best result,turning the calibration procedure simplicity as valuable asits precision. In this paper, we present a new calibrationprocedure for structured-light systems that is both very easyto perform and highly accurate.
Figure 1. Structured-light system calibration
The key idea of our method is to estimate the coordinatesof the calibration points in the projector image plane usinglocal homographies. First, a dense set of correspondencesbetween projector and camera pixels is found by projectingonto the calibration object identical pattern sequence as theone later projected to scan the target, reusing most of thesoftware components written for the scanning application.Second, the set of correspondences is used to compute agroup of local homographies that allow to find the projectionof any of the points in the calibration object onto theprojector image plane with sub-pixel precision. In the end,the data projector is calibrated as a normal camera.Our main contribution is a method for finding correspon-dences between projector pixels and 3D world points. Oncethose correspondences are known any calibration techniqueavailable for passive stereo can be applied directly to thestructured-light system. Our method does not rely on thecamera calibration parameters to find the set of correspon-dences. As a result, the projector calibration is not affectedin any way by the accuracy of the camera calib  http://www.nuokui.com/pdf/Vngc4C4fnUHI.html  ration.We show, as a second contribution, that the proposedcalibration method can be implemented in such a way that nouser intervention is necessary after data acquisition, makingthe procedure effective even for unexperienced users. To
Page 2this purpose, we have made a calibration software package,which we plan to make publicly available for anyone inter-ested in structured-light applications to try. Concisely, oursoftware requires two actions:1) Project a sequence of gray code patterns onto astatic planar checkerboard placed within the workingvolume. Capture one image for each pattern and storethem all in the same directory. Repeat this step forseveral checkerboard poses until properly cover allthe working volume. Use a separate directory for eachsequence.2) Execute the calibration software and select the direc-tory containing all the sequences. Enter the checker-board dimensions. Click on â€œCalibrateâ€� button. Thesoftware will automatically decode all the sequences,find corner locations, and calibrate both projector andcamera. The final calibration will be saved to a file forlater use.A. Related WorkMany projector calibration procedures exist, however,we have not found any satisfying the following two keyproperties: easy-to-perform for the common user and highprecision to enable accurate 3D reconstructions. Severalmethods ([1], [2], [3], [4], [5], and [6]) use a pre-calibratedcamera to find world coordinates in some calibration artifact,which in turn they use to assign projector correspondences.These methods might be simple to perform, but all of themlack of accuracy in the projector parameters due to theirdependence on the camera calibration. The inaccuracies area direct consequence of their approach: even small cameracalibration errors could result into large world coordinateerrors. Their failure point is to estimate the projector pa-rameters from those, far from accura  http://www.nuokui.com/pdf/Vngc4C4fnUHI.html  te, world coordinatesdecreasing the complete system precision.A different approach is adopted in [7], [8], and [9] where,neither a calibrated camera, nor a printed pattern is required.Instead, they ask the user to move the projector to severallocations so that the calibration patternâ€”projected onto afix planeâ€”changes its shape. We argue that moving theprojector might be inconvenient, or impossible in general(e.g. a system mounted on a rig). Moreover, these methodsare not applicable if a metric reconstruction is mandatorybecause their result is only up-to-scale.Other authors have proposed algorithms ([10], [11], [12],and [13]) where a projected pattern is iteratively adjusteduntil they overlap a printed pattern. The overlap is measuredwith help of an uncalibrated camera. Since both patternsmust be clearly identified, the classic black and white patternis replaced by color versions of itâ€”a color camera is alsomandatory. In practice, switching to color patterns makecolor calibration unavoidableâ€”printed and camera colorsseldom matchâ€”imposing an extra requirement to the user.Besides, this calibration scheme demands continuous inputfrom a camera to run, rendering impossible to separate thecapture stage from the calibration algorithm, which is acommon and useful practice in the field.A common practice among projector calibration methods([3], [7], [8], [10], and [12]) is to find one homographytransformation between a calibration plane and the projectorimage plane. Despite the elegance of the concept, beinghomographies linear operators, they cannot model non-lineardistortions as the ones introduced by projector lenses.In [14], the authors claim to get very accurate resultswith their method that involves projecting patterns on aâ€œflat aluminum board mounted on a high precision movingmechanismâ€�. Our complain is that such a special equipmentis not available to the common user, limiting its generala  http://www.nuokui.com/pdf/Vngc4C4fnUHI.html  pplicability. We disregard this method as non-practical.Finally, Zhang and Huang [15], and others ([7], [16])employ structured-light patterns similarly to us, however, in-stead of computing projector point correspondences directlyfrom the images as captured by the camera, they createnew synthetic images from the projectorâ€™s viewpoint andfeed them to standard camera calibration tools. The inter-mediate step of creating synthetic images at the projectorâ€™sresolution, usually low, might discard important informationbeing undesirable. On the contrary, the method we proposefinds projector point correspondences from structured-lightpatterns directly at the camera resolution. No syntheticprojector image is created.The rest of the paper is organized as follows: Section IIexplains the calibration method, Section III expands theprevious section with implementation details, Section IVdiscusses the experiments done to verify the precision ofthe method and presents a comparison with other calibrationsoftware, finally Section V concludes our work.II. METHODOur setup comprises one projector and one camera be-having as a stereo pair. We describe them both using thepinhole model extended with radial and tangential distortion,an advantage over several methods ([3], [5], [6], [7], [8],[9], and [12]), which fail to compensate for distortionsin the projected patterns. Moreover, we have seen in ourexperiments that most projectors have noticeable distortionsoutside their focus plane, distortions that affects the accuracyof the final 3D models.We took Zhangâ€™s method [17] as inspiration in favor ofits simplicity and well-known accuracy. It uses a planarcheckerboard as calibration artifact, which is easy-to-makefor anyone with access to a printer. In Zhangâ€™s cameracalibration, the user captures images of a checkerboardof known dimensions at several orientations and the al-gorithm calculates the camera calibratio  http://www.nuokui.com/pdf/Vngc4C4fnUHI.html  n parameters usingthe relation between the checkerboard corners in a cameracoordinate system and a world coordinate system attachedto the checkerboard plane.
Page 3A. Projector and camera modelsThe proposed calibration method allows to choose anyparametric model to describe the projector and camera. Ourimplementation uses the pinhole model extended with radialand tangential distortion for both projector and camera. Letbe X âˆˆ R3 a point in a world coordinate system with originat the camera center, and let u âˆˆ R2 the pixel coordinatesof the image of X in the camera plane, then X and u arerelated by the following equations:X =ï£®ï£°xyzï£¹ï£» , Ëœu =[ ËœuxËœuy]=[ x/zy/z](1)u = Kc ï¿½ L(Ëœu)(2)Kc =ï£®ï£°fxÎ³ox0fyoy001ï£¹ï£»(3)L(Ëœu) =[ Ëœu ï¿½ (1   k1r2   k2r4) âˆ†t(Ëœu)1](4)âˆ†t(Ëœu) =[ 2k3 Ëœux Ëœuy   k4(r2   2Ëœu2
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(6)where Kc is known as camera intrinsic calibration, k1 and k2as radial distortion coefficients, and k3 and k4 as tangentialdistortion coefficients. Similarly, if R and T are a rotationmatrix and a translation vector that encode the pose ofthe projectorâ€™s center of projection in the world coordinatesystem defined above, and let v âˆˆ R2 the pixel coordinatesof the image of X in the projector plane, thenX =ï£®ï£°xyzï£¹ï£» = R ï¿½ X   T, Ëœv =[ x /zy /z](7)v = Kp ï¿½ L(Ëœv)(8)where the projector is described by its intrinsic calibra-tion Kp, and the pair (R, T) is known as the stereo systemextrinsic calibration.B. Data acquisitionCamera calibration involves collecting images of a planarcheckerboard. We have modified this acquisition step tomake possible to calibrate both camera and projector. Thenew data acquisition is: for each plane orientation, insteadof capturing only one image, the user must project and cap-ture a complete structured-light pattern sequence. Althoughany structured-l  http://www.nuokui.com/pdf/Vngc4C4fnUHI.html  ight pattern sequence would work, we haveused and recommend gray code sequences (Fig. 2) becausethey are robust to decoding errorsâ€”in a calibration routineavoiding all possible errors usually outweighs execution
Figure 2. Example of the calibration images: completely illuminated image(left), projected gray code onto the checkerboard (right)Figure 3.Decoded gray pattern example: pixels with the same colorcorrespond either to the same projector column (left) or same projectorrow (right). Gray color means â€œuncertainâ€�. Note that there are no uncertainpixels in the checkerboard region.
speed. Someone might argue that capturing many imagesfor each checkerboard pose makes our method complex, butthe whole data acquisition task is identical to the standardstructured-light scanning task as would be executed later.Furthermore, the only actual requirement for the user isto keep the checkerboard static for a few seconds, timenecessary to project and capture a complete sequence.C. Camera calibrationIntrinsic camera calibration refers to estimating the pa-rameters in the chosen camera model. Following Zhangâ€™smethod, we need to find the coordinates in the cameraimage plane of all the checkerboard corners, for each ofthe captured checkerboard orientations. Corner locationsare sought in a completely illuminated image, of eachcheckerboard orientation, using a standard procedure. Acompletely illuminated image is an image captured whileall data projector pixels are turned onâ€”if no such imageis available, it could be created as the maximum of everyimage in the sequence. The procedure continues as the usualcamera calibration, please review [17] for more details.Our software expects the first image in every gray codesequence to be a completely illuminated image that couldbe used directly for camera calibration. It uses OpenCVâ€™sfindChessboardCorners() function [18] to automatically findcheckerboard cor  http://www.nuokui.com/pdf/Vngc4C4fnUHI.html  ner locations and, then, it refines them toreach sub-pixel precision. Finally, a call to the functioncalibrateCamera() returns the calibrated camera parameters.
Page 4Figure 4. Projector corner locations are estimated with sub-pixel precisionusing local homographies to each corner in the camera image
D. Projector calibrationOur projector and camera are described with the samemathematical model, thus, we would like to follow identicalprocedure to calibrate them both. But the projector is not acamera. If the projector were a camera, it would be possibleto capture images from its viewpoint, to search checkerboardcorners in them, and to continue just as before. In realityno such images exist, but we know a relation betweenprojector and camera pixelsâ€”extracted from structured-lightsequencesâ€”and we will show how to use this relation toestimate checkerboard corner locations in projector pixelcoordinates. Moreover, being all the computations carriedon at the cameraâ€™s original resolution, corner coordinatesare localized with greater precision than if synthetic imagesat the projectorâ€™s resolution were used.The procedure to compute checkerboard corner coordi-nates in the projector coordinate system can be decomposein three steps: first, the structured-light sequence is decodedand every camera pixel is associated with a projector rowand column, or set to â€œuncertainâ€� (Fig. 3); second, a localhomography is estimated for each checkerboard corner inthe camera image; third and final, each of the corners isconverted (Fig. 4) from camera coordinates to projectorcoordinates applying the local homography just found.The structured-light decoding step depends on the pro-jected pattern, in our case complementary gray codes forrows and columns. Here, our method differs from [15]where fringe patterns were proposedâ€”our choice prioritizedecoding precision over acquisition speed. As pointed outin [19  http://www.nuokui.com/pdf/Vngc4C4fnUHI.html  ], a subset of the gray code imagesâ€”the ones wherethe stripes look â€œthinâ€�â€”may be regarded as exhibiting ahigh frequency pattern. These high frequency patterns makepossible to split the intensity measured at each pixel in adirect and a global component. Ideally, the amount of lightperceived at each camera pixel is product of exactly oneprojector pixel being turned on or off, but in practice thisis rarely true. The intensity value reported by the cameraat one pixel is the sum of the amount of light emittedby a projector pixel, called direct component, plus someamount of light, known as global component, originatedat other sources (including reflections from other projectorpixels). Decoding errors in gray sequences are mostly causedby failure on identifying these components, or completelyignoring their existence. On the contrary, if each componentis correctly identified, a simple set of rules permits todrastically reduce decoding errors (Fig. 3). The rules andadditional information on the topic are given in [20] underthe name of robust pixel classification.The relation learned from structured-light patterns is notbijectiveâ€”it cannot be used right away to translate fromcamera to projector coordinates. To overcome this issue wepropose the concept of local homography: a homographythat is valid only in a region of the plane. Instead of applyinga single global homography to translate all the checkerboardcorners into projector coordinates, we find one local ho-mography for each of the checkerboard corners. Each localhomography is estimated within a small neighborhood ofthe target corner and is valid only to translate that cornerinto projector coordinates and no other corner. Local homo-graphies allow to model non-linear distortions because eachcorner is translated independently of the others. Additionally,they are robust to small decoding errors because they areoverdetermined; they are estimated   http://www.nuokui.com/pdf/Vngc4C4fnUHI.html  from a neighborhoodwith more points than the minimum required.A local homography is found for each checkerboardcorner considering all the correctly decoded points in a patchof the camera image centered at the corner location. Let bep the image pixel coordinates of a point in the patch underconsideration, and let be q the decoded projector pixel forthat point, then we find a homographyË†H that minimizes:Ë†H = argmin
H
âˆ‘
âˆ€p
||q âˆ’ Hp||2(9)H âˆˆ R3ï¿½3, p = [x, y, 1]T , q = [col, row, 1]T(10)The target corner ï¿½p, located at the center of the patch, istranslated to ï¿½q, given in projector coordinates, applying thelocal homographyË†H:ï¿½q = Ë†H ï¿½ ï¿½p(11)The same strategy is repeated until all checkerboardcorners have been translated. Now, knowing the location ofall corners in the projector coordinate system, the projectorintrinsic calibration is found with identical procedure as forthe camera.E. Stereo system calibrationStereo calibration means finding the relative rotation andtranslation between projector and camera. At this point, theintrinsic parameters found before are kept fixed, the worldcoordinates are identified with camera coordinates, and weseek for the pose of the projector in world coordinates.The physical dimensions of the calibration checkerboard
Page 5are known. The checkerboard corner projections onto bothcamera and projector image planes are also knownâ€”theywere found in the previous steps. The calibration of theprojector-camera stereo system, therefore, is identical to thecalibration of any other camera-camera system.Our software calls OpenCVâ€™s stereoCalibrate() functionwith the previously found checkerboard corner coordinatesand their projections, the output is a rotation matrix R anda translation vector T relating the projector-camera pair.F. AlgorithmThe complete calibration procedure can be summarizedin simple steps and implemented as a calibratio  http://www.nuokui.com/pdf/Vngc4C4fnUHI.html  n algorithm:1) Detect checkerboard corner locations for each planeorientation in the completely illuminated images.2) Estimate global and direct light components for eachset using gray code high frequency patterns.3) Decode structured-light patterns into projector rowand column correspondences by means of robust pixelclassification, considering pixel global and direct com-ponents from step 2.4) Take small image patches centered at the checkerboardcorner coordinates from step 1 (e.g. a 47x47 pixelssquare) and use all the correctly decoded pixels ineach patch to compute a local homography that con-verts from camera to projector coordinates. Correspon-dences were obtained in step 3.5) Translate corner locations (step 1) from camera toprojector coordinates using patch local homographiesfrom step 4.6) Fix a world coordinate system to the checkerboardplane and use Zhangâ€™s method to find camera intrinsicsusing camera corner locations from step 1.7) Fix a world coordinate system to the checkerboardplane and use Zhangâ€™s method to find projector intrin-sics using projector corner locations from step 5.8) Fix camera and projector intrinsics (steps 6 and 7)and use world, camera, and projector corner locations(steps 1 and 5) to estimate stereo extrinsic parameters.9) Optionally, all the parameters, intrinsic and extrinsic,can be bundle-adjusted together to minimize the totalreprojection error.III. CALIBRATION SOFTWAREWe have implemented the algorithm in Section II-F intoa complete structured-light system calibration software. Thepurpose is two-fold: first, to prove that our method can beexecuted fully automatic provided the calibration images areavailable; second, to facilitate the access to high quality 3Dscans for a broad range of usersâ€”we think that structured-light systems are the key. Our experience says that cali-brating structured-light systems accurately is a cumbersomeand time consumin  http://www.nuokui.com/pdf/Vngc4C4fnUHI.html  g task. In hopes of ease the task, we havewritten a software (Fig. 5) with a Graphical User Interface
Figure 5. Calibration software main screen
(GUI) capable of calibrate such systems following a simpleprocedure. The software is completely written in C  , usesQt [21] as a graphical interface library, and OpenCV [18]library for the vision related tasks. This library selectionenables to build and run the software in common platformssuch as Microsoft Windows and GNU/Linux.Checkerboard corner detection is done with OpenCVâ€™sfindChessboardCorners() function, however, as reportedin [22], this function is very slow in combination with high-resolution images. We worked with 12Mpx images and wehave observed this issue. Our solution is to downsamplethe input images in order to accelerate the corner search,and to consider the downsampled corner locations as anapproximate solution to the high resolution search. Thissimple technique has proven to be fast yet effective: searchspeed is independent of the camera resolution and results asaccurate as if no downsampling were performedâ€”becausethe refinement is executed at the original resolution.Theoretically, direct and global light components shouldbe estimated from the highest frequency pattern projected.In practice, doing so results in decoded images with visi-ble artifacts. Thus, we skip the highest frequency and wecompute the direct and global components from the twosecond highest patterns. Combining more than one patterngives better precision and skipping the last pattern removesthe artifacts due to limited projector resolution.Let be S = I1, ï¿½ï¿½ï¿½ ,Ik the selected set of patternimages, and let be p a valid pixel location, then the directand global components at p, Ld(p) and Lg(p), are found asfollows:L 
p = max0<iâ‰¤k
Ii(p), Lâˆ’
p = min0<iâ‰¤k
Ii(p),(12)Ld(p) =L 
p âˆ’ Lâˆ’p
1 âˆ’ b, Lg(p)=2Lâˆ’
p âˆ’ bL p
1  http://www.nuokui.com/pdf/Vngc4C4fnUHI.html   âˆ’ b2,(13)where b âˆˆ [0, 1) is a user-set value modeling the amountof light emitted by a turned-off projector pixelâ€”we recom-
Page 6mend the reader to study [19] for more details. We haveset b = 0.3 in our setup.Finally, local homographies are estimated from fix sizeimage patches; we have, therefore, to select a proper patchsize for them. If the chosen size is too small, the algorithmbecomes very sensitive to decoding errors. On the contrary,if the patch is too large, the algorithm is robust to errors, butunable to cope with strong lens distortions. Experimentally,we have found a patch size of 47x47 pixels to perform wellin our system; we have used this value in all our tests.Nevertheless, a more rigorous analysis is required to decidethe optimum size given the system parameters.IV. RESULTSWe have developed this calibration method to enable highprecision 3D scanning. In consequence, we think the bestcalibration quality evaluation is to scan objects of knowngeometry and to compare their 3D models with groundtruth data. Additionally, we think that an evaluation wouldnot be complete without a comparison with other avail-able calibration methods. We have searched and found thatSamuel Audetâ€™s ProCamCalib [10] and Projector-CameraCalibration Toolbox (also procamcalib) [1] are publiclyavailable tools. We have tried both, but Audetâ€™s tool currentversion cannot be used with our camera, for that reason, wewill compare our method with Projector-Camera CalibrationToolbox [1] only, from now on just â€œprocamcalibâ€�.A. Test setupOur test setup comprises a Mitsubishi XD300U DLPdata projector and a Canon EOS Rebel XSi camera. Pro-jectorâ€™s resolution is 1024x768 and cameraâ€™s resolution is4272x2848. They were placed one next to the other (Fig. 6).Their focus length, zoom, and direction were adjusted priorcalibration accordingly to the scan target.B. Reprojection errorUsually, the quality of c  http://www.nuokui.com/pdf/Vngc4C4fnUHI.html  amera calibration is evaluatedconsidering only reprojection errors. But, a minimum re-projection error measured in the calibration images doesnot ensure the best reconstruction accuracy of arbitraryobjects. In fact, in our experiments adding an additionalminimization step of the intrinsic and extrinsic parametersaltogether (Section II-F, step 9) overfitted the calibrationdata producing slightly less accurate 3D models. All inall, reprojection errors are indicators of calibration accuracyand we report ours as a reference for comparison withother methods. Table I shows the reprojection error of ourmethod and procamcalib; for further comparison, we havealso included a modified version of our method which usesone global homography instead of local ones. In result,using identical camera calibration, procamcalib reprojectionerror is much higher than ours as consequence of its de-pendency on the camera calibration to find world plane
Figure 6. System setupMethodCameraProjectorProposed0.32880.1447Proposed with global homography0.2176procamcalib0.8671Table IREPROJECTION ERROR
correspondences. The modified method is an improvementover procamcalib, however, given the linearity of its globalhomography, it fails to model projector lens distortion beingsuboptimal.C. Projector lens distortionOne of the main advantages of our method is that it allowsto model radial and tangential distortion in projector lensesthe same as in cameras. Opposite to what is said in otherpapers (e.g. [9]), projector lenses have noticeable distortion,specially near the edges. Table II shows an example ofthe distortion coefficients estimated by our method; notethat k2 has a non-negligible value. The complete distortionmodel (Fig. 7) shows that points close to the top-left cornerare displaced about 12 pixels from their ideal non-distortedcoordinates; at the bottom-center of the projected image,where its princ  http://www.nuokui.com/pdf/Vngc4C4fnUHI.html  ipal point is located, there is no distortionas expected. In conclusion, data projectors have non-triviallens distortions that cannot be ignored.D. Ground truth dataTo evaluate the quality of the calibration beyond itsreprojection errors, we scanned real objects and created 3Dmodels of them which could be compared with ground truthdata. Our first model corresponds to a plane of 200x250 mm,
Page 7k1k2k3k4-0.08880.3365-0.0126-0.0023Table IIPROJECTOR DISTORTION COEFFICIENTS: k1 AND k2 RADIAL
DISTORTION, k3 AND k4 TANGENTIAL DISTORTION
Figure 7. Projector distortion model: points are displaced about 12 pixelsnear the top-left corner
for which we created one 3D model with each of bothcalibrations in the previous section. The ground truth datafor these models are points sampled from an ideal plane.The error distribution of the model reconstructed with ourcalibration (Fig. 8 top) resembles a Gaussian distributionwhere 95% of its samples are errors equal or less than0.33 mm. On the other hand, the reconstruction made withprocamcalibâ€™s calibration (Fig. 8 bottom) has an irregularerror distribution denoting calibration inaccuracy. The resultsare summarized in Table III.Our next model is a statue head scanned both with ourstructured-light system and with a commercial laser scanner.The laser scanner is a NextEngine Desktop Scanner 2020i.Both 3D models are compared with the Hausdorff distanceand the result is shown as an image (Fig. 9). The colorscale denotes the distance between both meshes rangingfrom 0 to 1 mm. The error reaches its maximum only in
MethodMax. ErrorMean ErrorStd. Dev.Proposed0.85460.0000420.1821procamcalib1.63520.0001050.2909Table IIIIDEAL AND RECONSTRUCTED PLANE COMPARISONFigure 8. Plane error histogram: error between an ideal plane and a scannedplane recontructed using the proposed calibration (top) and procamcalibcalibration (botto  http://www.nuokui.com/pdf/Vngc4C4fnUHI.html  m)Figure 9. Structured-light versus laser scanner: Hausdorff distance betweenmeshes from 0mm to 1mm
regions that were in shadow during scanning. In the faceregion the error is 0.5 mm at most.Finally, we scanned a statue from six different viewpointsand, after manual alignment and merging, we created acomplete 3D model using Smooth Signed Distance (SSD)surface reconstruction ([23], [24]). The final mesh preserves(Fig. 10) even small details.V. CONCLUSIONWe have introduced a new method to calibrate projector-camera systems that is simple to implement and moreaccurate than previous methods because it uses a full pinholemodelâ€”including radial and tangential lens distortionsâ€”todescribe both projector and camera behaviors and computessub-pixel resolution 3D point projections from uncalibrated
Page 8Figure 10. SSD 3D model from 6 structured-light scans
camera images. We have developed a simple-to-use calibra-tion software that we will make freely available for peopleto experiment with.ACKNOWLEDGMENTThe authors want to thank Fatih Calakli for proof-readingthis paper and the useful suggestions he has made to improvethis work. The material presented in this paper describeswork supported by the National Science Foundation underGrants No. IIS-0808718, and CCF-0915661.REFERENCES
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