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Page 2Summary. An objective of microarray data analysis is to identify gene expressionsthat are associated with a disease related outcome. For each gene, a test statistic iscomputed to determine if an association exists, and this statistic generates a marginalp-value. In an effort to pool this information across genes, a p-value density functionis derived. The p-value density is modeled as a mixture of a uniform (0,1) density anda scaled ratio of normal densities derived from the asymptotic normality of the teststatistic. The p-values are assumed to be weakly dependent and a quasi-likelihoodis used to estimate the parameters in the mixture density. The quasi-likelihood andthe weak dependence assumption enables estimation and asymptotic inference on thefalse discovery rate for a given rejection region, and its inverse, the p-value thresholdparameter for a fixed false discovery rate. A false discovery rate analysis on a local-ized prostate cancer data set is used to illustrate the methodology. Simulations areperformed to assess the performance of this methodology.Keywords: Asymptotic normal test statistic, confidence interval, microarray, p-valuemixture model, quasi-likelihood, weak dependence.2
Page 31IntroductionMicroarray analysis is used to identify gene expressions that are associatedwith a disease related outcome. It is typically explorator  http://www.nuokui.com/pdf/OpD_M5xNBb9I.html  y, with no apriorihypothesis concerning the association between a specific gene expression andthe outcome variable. The intent of the analysis is to generate hypothesesfor further exploration, either in the laboratory or in the clinic. Microarraytechnology is currently applied in many areas including: clinical staging, cellline classification, distinguishing tumor type, and understanding the effect ofa biological agent. Scientists believe that identification of informative geneswill provide insight into a disease mechanism, a genetic pathway, or isolationof a therapeutic target.Microarray analysis generates a vast amount of data. In a typical study,tens of thousands of gene expressions are recorded on the subjects under study.For each gene, a test of association of gene expression and outcome variableis performed. The statistical challenge is how to determine which genes aretruly associated with outcome. Simply testing each gene individually, withoutadjustment for the number of genes examined, provides little confidence thattrue associations are identified and nonimportant genes are eliminated fromfurther study. For example, if a test statistic is computed for each gene, andthe genes with the highest test statistic are found discriminatory, the cut-off forthe test statistic is still problematic. Due to the thousands of tests performed,use of a standard nominal significance level to determine this critical regionwill result in overstating the number of significant associations identified.Traditionally, protection against multiple comparisons is undertaken bychoosing the critical region of a test to satisfy a familywise error rate of Î±,where the familywise error rate is defined as the probability of rejecting at leastone true hypothesis (Hochberg and Tamhane, 1987). While protecting againstfalsely rejecting tests, the familywise error rate is a conservative approach,resulting in a loss of power i  http://www.nuokui.com/pdf/OpD_M5xNBb9I.html  n each of the individual tests. As a result, using thisapproach to adjust for the multiple tests could potentially miss genes that areassociated with outcome. To correct for this conservativeness, Benjamini andHochberg (1995) developed the false discovery rate (FDR), which is defined as
Page 4the expected proportion of false rejections of the null hypothesis. The FDRrepresents a compromise between the conservative familywise error rate andtesting each gene at the nominal significance level.Variations of the false discovery rate, termed the positive, conditional, andmarginal false discovery rates, have been proposed in the literature (Benjaminiand Hochberg 1995, Storey 2002, Tsai 2003). Assuming weak dependence andat least one test statistic is rejected, as the number of genes tested increases,these false discovery rates all converge to the probability a gene is not associ-ated with the outcome conditional on the test statistic lying in the rejectionregion. As a result of the asymptotic equivalence of these false discovery rates,we call this conditional probability the limiting false discovery rate. For theanalysis of gene array data, where tens of thousands of tests are carried out,this asymptotic evaluation of the FDR is reasonable.The limiting FDR has been estimated in the literature by pooling informa-tion across genes and using a mixture model for the density of the test statisticor corresponding p-value. Pan et al. (2003) employ a normal mixture modelfor the density of the t-statistic. Parker and Rothenberg (1988), Allison et al.(2002), and Pounds and Morris (2003) use a Uniform-Beta mixture to modelthe p-value density. The accuracy of the resulting FDR estimates rely on theadequacy of the mixture density specification. To avoid this specification, non-parametric estimates of the mixture density have been proposed by Efron etal. (2001), Storey (2002), and Black (2004). In additio  http://www.nuokui.com/pdf/OpD_M5xNBb9I.html  n to estimation of thelimiting FDR, estimates of the p-value threshold, adapted from the sequentialp-value method of Benjamini and Hochberg (1995), have been developed byBenjamini and Hochberg (2000), Genovese and Wasserman (2004), and Storeyet al. (2004). Although these FDR and p-value threshold estimates are com-monly employed in the analysis of microarray data, their precision is typicallyignored. One exception is Owen (2005), who computed the variance of thenumber of false discoveries when genes are dependent, but this calculation isconditional on the observed gene expression data and assumes all genes areunrelated to the outcome variable.In this paper, we develop estimates of the limiting false discovery rate eval-uated at a p-value threshold, and its inverse, the p-value threshold evaluated
Page 5at a fixed FDR, from a quasi-likelihood derived from marginal p-value mix-ture densities. The asymptotic normality of the FDR and p-value thresholdestimates stem from quasi-likelihood based results and a weak dependence as-sumption between gene expression values within subject. Estimation of theasymptotic variance for the limiting FDR estimate is derived and confidenceintervals for the limiting FDR and p-value threshold parameters are devel-oped, accounting for the potential dependence between genes. We believethese estimates of precision provide a unique perspective to error rate analysisof microarray data.The methodology is demonstrated on a microarray gene expression data setobtained from 79 patients who underwent a radical prostatectomy for localizedprostate cancer. The data were obtained from tissue samples taken at the timeof surgery. In the analysis, patients were followed for at least seven years; 37patients were classified with recurrent disease based on a rising PSA profile,whereas 42 patients classified with nonrecurrent disease, remained with anundetectable PSA seven years  http://www.nuokui.com/pdf/OpD_M5xNBb9I.html   after surgery (Stephenson et al. 2005). Prostatespecific antigen (PSA) is a biomarker that is commonly used to determinethe existence of prostate tumor cells in the patient. The gene expressionanalysis was carried out using the Affymetrix U133A human gene array, whichhas 22,283 genes. Expression values on each array were preprocessed usingAffymetrix MAS 5.0. This preprocessing algorithm includes a backgroundadjustment of the expression values, and a within array scale transformation,producing a 2% trimmed mean within each array equal to 500. The choice of500 is the default value for MAS 5.0.2P-value Mixture ModelTo determine differential gene expression between the recurrent/nonrecurrentoutcomes, a t-test was performed for each gene, and the accompanying p-value,based on the standard normal reference distribution, was computed to test thehypothesisH0g: no difference in gene g expression between outcome groups
Page 6H1g: gene g expression is different between outcome groups (g = 1,...G).Each p-value is generated from one of these two classes (not different/different).A random variable Dg, indicates whether the observed p-value for gene g,denoted by pg, was generated from the null class (Dg = 0) or the alternativeclass (Dg = 1). The marginal distribution of Dg is Bernoulli with parameterÎ» = Pr(not different) and the density of P given D is written as fD(p). Sincethe Dg are not observed, the marginal density of P is represented as a mixtureof two density functionsf(p) = Î»f0(p)   (1 âˆ’ Î»)f1(p).In the null class, the distribution of P is uniform (0,1),f0(p)=1 0 <p< 1.The alternative density isf1(p;Ï„) =12Ï†Ï„,1(Î¦âˆ’1(1 âˆ’ p/2))Ï†0,1(Î¦âˆ’1(1 âˆ’ p/2)),where Ï†ï¿½,Ïƒ(u) denotes a normal density function with location and scale pa-rameters ï¿½ and Ïƒ, and Î¦ is the standard normal distribution function. Thisdensity is derived from the asymptotic normality of the test statistic T andthe change of var  http://www.nuokui.com/pdf/OpD_M5xNBb9I.html  iable P = 2(1 âˆ’ Î¦(|T|)) (Hung et al. 1997).Estimation and inference in this work are based on the marginal p-valuesderived from the asymptotic normality of the test statistic. The accuracyof the inference derived from the proposed methodology is a function of theaccuracy of the asymptotic normal approximation and thus improves as thesample size increases. Although Studentâ€™s t-statistic is used to generate thep-values for the prostate cancer gene expression data, the application is wideranging and can be applied to any k-sample comparison or test of associationthat is based on an asymptotic normal test statistic.The mixture model used to represent the density of the p-values isf(p;Î», Ï„) = Î»   (1 âˆ’ Î»)12Ï†Ï„,1(Î¦âˆ’1(1 âˆ’ p/2))Ï†0,1(Î¦âˆ’1(1 âˆ’ p/2))0 < p â‰¤ 1.(1)
Page 7In this model, the parameter Ï„ measures the strength of the differentiallyexpressed genes, with a large value signaling that there are a group of geneswith very small p-values. For the two-sample t-test, assuming a commonvariance Ïƒ2, and n1,n2 subjects in the two groups,Ï„ =( n1n2n1   n2)1/2 (|ï¿½1 âˆ’ ï¿½2|Ïƒ).Estimation of the parameters Î² = (Î», Ï„) is based on the loglikelihoodLG(Î», Ï„) â‰¡
G
âˆ‘
g=1
lg(Î²) =
G
âˆ‘
g=1
logÎ»   (1 âˆ’ Î»)12Ï†Ï„,1(Î¦âˆ’1(1 âˆ’ pg/2))Ï†0,1(Î¦âˆ’1(1 âˆ’ pg/2)).(2)In the context of microarray analysis, it is not plausible to treat the G genederived p-values as independent. We therefore treat LG(Î», Ï„) as a log quasi-likelihood. A form of weak dependence between the quasi-score components,described in conditions (D1)-(D3) below, is sufficient to satisfy the centrallimit theorem and the weak law of large numbers for the parameter estimates(Serfling 1968). As a result, the theorem stated following these conditionsprovides the asymptotic inferential structure for Î².Denote the quasi-score component assg(Î²) =âˆ‚lg(Î²)âˆ‚Î²,Ma as a Ïƒ-algebra generated by the quasi-score components   http://www.nuokui.com/pdf/OpD_M5xNBb9I.html  s1(Î²),...,sa(Î²),and the partial sum of the quasi-score asTa(Î²) = Gâˆ’1/2
a G
âˆ‘
g=a 1
sg(Î²).The following conditions are used to define weak dependence of the quasi-scorecomponents(D1) E[sg(Î²0)] = 0(D2) limGâ†’âˆž var[Ta(Î²0)] = V (Î²0) uniformly in a(D3) E[E2(Ta(Î²0)|Ma )] â‰¤ b(G)E|var(Ta(Î²0)|Ma) âˆ’ var(Ta(Î²0))| â‰¤ b(G)
Page 8where b(G) = O(Gâˆ’Î¸); Î¸ > 0.theorem: Assume that the weak dependence conditions (D1-D3) are sat-isfied. Define Ë†Î² = (Ë†Î», Ë†Ï„) as the maximum quasi-likelihood estimate derivedfrom equation (2) and let Î²0 denote the true value of Î². Let N(Î²0) denotea bounded neighborhood around Î²0 and assume Gâˆ’1LG(Î²) and its derivativeare uniformly bounded in N(Î²0). Then as n â†’ âˆž and G â†’ âˆž,(1) Ë†Î² is a consistent estimator of Î²0,(2)âˆšG(Ë†Î² âˆ’ Î²0)
D
â†’ N(0,Î£),Î£ = Aâˆ’1V Aâˆ’1where1âˆšG
G
âˆ‘
g=1
âˆ‚lg(Î²0)âˆ‚Î²
D
â†’ N(0,V )1G
G
âˆ‘
g=1
âˆ‚2lg(Î²0)âˆ‚Î²âˆ‚Î²T
P
â†’ A1Gâˆ‘âˆ‘
g,hâˆˆC
âˆ‚lg(Î²0)âˆ‚Î²âˆ‚lh(Î²0)âˆ‚Î²
P
â†’ Vand C is the set of quasi-score component pairs with nonzero correlation (Lum-ley and Heagerty 1999). The matrices A and V are consistently estimated byAn(Ë†Î²) =1G
G
âˆ‘
g=1
âˆ‚2lg(Î²)âˆ‚Î²âˆ‚Î²Tâˆ£âˆ£âˆ£âˆ£Î²=Ë†Î²Vn(Ë†Î²) =1Gâˆ‘âˆ‘
g,hâˆˆC
âˆ‚lg(Î²)âˆ‚Î²âˆ‚lh(Î²)âˆ‚Î²âˆ£âˆ£âˆ£âˆ£Î²=Ë†Î²Estimation of V requires knowledge of the correlated quasi-score compo-nent pairs. The following argument is used to carry out this computation.Lett(eg)=Î¦âˆ’1(1 âˆ’ pg/2)represent the observed value of the t-statistic for gene g as a function of thegene expression data for the n subjects, where eT
g = (e1g,...,eng) is the gene
expression data vector. These n elements are derived from the two outcomegroups (recurrence / no recurrence). It is assumed that the elements are
Page 9generated independently, and up to a shift in location, identically distributed.The quasi-score for gene g is now written ass(Î²;eg) =âˆ‚âˆ‚  http://www.nuokui.com/pdf/OpD_M5xNBb9I.html  Î²logÎ»   (1 âˆ’ Î»)12Ï†Ï„,1(t(eg))Ï†0,1(t(eg))where we have added the gene expression vector as an argument to the quasi-score component. Application of the mean value theorem produces the fol-lowing covariance calculation for the quasi-score components corresponding togenes (g, h)cov[s(Î²;eg),s(Î²;eh)] =cov[s(Î²;ï¿½g)   WT (Î²;ï¿½âˆ—
g)(eg âˆ’ ï¿½g),s(Î²;ï¿½h)   WT (Î²;ï¿½âˆ—h)(eh âˆ’ ï¿½h)],
where E(eg) = ï¿½g, and W(Î²;ï¿½âˆ—
g) = âˆ‚s(Î²;eg)/âˆ‚eg is an nï¿½2 matrix evaluated
at the point ï¿½âˆ—
g which lies on a line between eg and ï¿½g. Letting Ïƒgh denote
the covariance of the gene expression data for genes g and h, it follows thatcov[s(Î²;eg),s(Î²;eh)] = ÏƒghWT (Î²;ï¿½âˆ—
g)W(Î²;ï¿½âˆ—h).
Thus, elimination of noncorrelated quasi-score component pairs can be accom-plished by testing whether the corresponding gene expression data pairs arecorrelated.For the prostate cancer data, the sample correlation matrix R = (r)ghwas computed for the 22,283 genes and Fisherâ€™s z-test statistic was used totest whether each gene pair had correlation zero. There were G(G âˆ’ 1)/2 â‰ˆ250 million tests to determine correlated gene pairs, resulting in a furthermultiple comparison problem. Using the Benjamini and Hochberg (1995) pro-cedure of controlling the false discovery rate at the 0.05 level, gene pairs wereconsidered correlated if the test statistic produced a p-value less than 0.003.Seven percent of the gene pairs demonstrated a nonzero correlation for theexpression data using this FDR criterion and were included in the summandfor the estimate Vn(Ë†Î²).Maximization of the quasi-likelihood was accomplished through the Nelder-Mead simplex algorithm, under the constrained parameter space (0 < Î» <1, 0 < Ï„). The parameter estimates from the prostate cancer data were, Ë†Î» =
Page 100.75, Ë†Ï„ = 1.89. To assess the adequacy of the mixture model (1), the observedp-values were compared to the model derived p-values. As sho  http://www.nuokui.com/pdf/OpD_M5xNBb9I.html  wn in Figure1, the mixture model along with the maximum quasi-likelihood parameterestimates provide an adequate fit to the data.
Histogram of p
pdensity0.00.20.40.60.81.00.01.02.03.0
Figure 1. Histogram for the observed 22,283 gene p-values and the p-valuemixture density estimate. The horizontal dotted line represents the quasi-likelihood estimate of Î».The mixture parameter estimate indicates that 25% of the 22,283 genesanalyzed are associated with recurrence. It is generally recognized that thelevel of confidence regarding membership into this alternative class is not equalfor all genes. Gene membership into the alternative class becomes increasinglylikely as the p-value decreases. Our strategy is to report those genes wherethere is a high level of confidence of this association.
Page 113Gene Selection based on the FDR and P-Value Threshold Pa-rametersThe false discovery rate (FDR) is a popular measure of this confidence level.Assuming a common marginal distribution for each p-value, the limiting FDRis defined at a fixed rejection region Î³0 byÏ€(Î³0) = Pr(D = 0|P â‰¤ Î³0);the probability a gene belongs to the null class given its associated p-value isless than Î³0 (Storey 2004, Genovese and Wasserman 2004). Using the p-valuemixture model framework, the limiting false discovery rate parameter at Î³0 isdefined asÏ€(Î³0;Î²) =Î»Î³0Î»Î³0   (1 âˆ’ Î»)(1 âˆ’ Î¦[Î¦âˆ’1(1 âˆ’ Î³0/2) âˆ’ Ï„]).(3)The consistency of Ï€(Î³0; Ë†Î²) results from the consistency of the quasilikelihoodestimates. Alternatively, since the FDR defined in (3) is a monotone functionof Î³, it can be set to a sufficiently small value Ï€0, and a consistent estimateof the threshold p-value Î³ is found through the equation Ï€(Î³; Ë†Î²) = Ï€0. Func-tionally, this is accomplished by solving the equationÎ³(Ï€0; Ë†Î²) =(1 âˆ’Ë†Î»)F1(Î³; Ë†Ï„)Ï€0Ë†Î»(1 âˆ’ Ï€0)(4)where F1(Î³;Ï„)=1 âˆ’ Î¦[Î¦âˆ’1(1 âˆ’ Î³/2) âˆ’ Ï„] is the distribution function of thep-values unde  http://www.nuokui.com/pdf/OpD_M5xNBb9I.html  r the alternative hypothesis and evaluated at Î³.Although the FDR and p-value threshold estimates are consistent, theirprecision is a function of the level of dependence in the gene expression data.As this dependence increases, the confidence that the FDR and threshold es-timates lie in a small neighborhood around their parameter values diminishes.To obtain a better understanding of these parameters, an asymptotic normalpivotal statistic is constructed to produce an asymptotic confidence interval forthe FDR parameter Ï€(Î³0;Î²0) and its inverse function, the p-value thresholdparameter Î³(Ï€0;Î²0).The asymptotic normality of Ï€(Î³0; Ë†Î²) stems from the asymptotic normalityof the quasi-likelihood estimate Ë†Î², derived in the theorem, and the continuity
Page 12of Ï€ with respect to Î². The asymptotic variance of Ï€(Î³; Ë†Î²) follows directlyfrom the asymptotic variance of the quasi-likelihood estimates and the deltamethodvar[Ï€(Î³0; Ë†Î²)] = Î¸T Î£Î¸where Î¸T =[âˆ‚Ï€âˆ‚Î»,âˆ‚Ï€âˆ‚Ï„].The resulting symmetric (1 âˆ’ Î±) asymptotic confidence interval for the FDRat the p-value threshold level Î³0 is[Ï€(Î³0; Ë†Î²) âˆ’ z1âˆ’Î±/2âˆšvarÏ€(Î³0; Ë†Î²) , Ï€(Î³0; Ë†Î²)   z1âˆ’Î±/2âˆšvarÏ€(Î³0; Ë†Î²)],where z1âˆ’Î±/2 is the 1 âˆ’ Î±/2 standard normal quantile. A confidence intervalfor the p-value threshold parameter at a given FDR level Ï€0 is constructed byapplying the inverse transformation to the lower and upper confidence limitsof Ï€(Î³;Î²). Specifically, a (1âˆ’Î±) FDR confidence interval for any given Î³ maybe written asPr[aÎ³ < Ï€(Î³;Î²) < bÎ³]=1 âˆ’ Î±.By choosing Î³ to be the p-value threshold parameter for a FDR level Ï€0, i.e.Ï€(Î³;Î²) = Ï€0, and applying the inverse transform, the (1âˆ’Î±) p-value thresholdconfidence interval isPr[(1 âˆ’ Î»)F1(Î³;Ï„)aÎ³Î»(1 âˆ’ aÎ³)< Î³(Ï€0;Î²) <(1 âˆ’ Î»)F1(Î³;Ï„)bÎ³Î»(1 âˆ’ bÎ³)]= 1 âˆ’ Î±.Evaluation of this asymptotic confidence interval for the p-value thresholdparameter at the FDR level Ï€0 is obtained by substituting consistent estimatesfor (  http://www.nuokui.com/pdf/OpD_M5xNBb9I.html  Î²,Î³) in the upper and lower confidence bounds. These estimates areobtained from equations (2) and (4).Although either estimate, Ï€(Î³0; Ë†Î²) or Î³(Ï€0; Ë†Î²), may be used in differentialgene expression analysis, for the purpose of gene selection, a direct approachis to fix the FDR and estimate the p-value threshold region; the genes that fallinto the rejection region are chosen for further analysis. This is the approachcarried out for the prostate cancer data set.The proposed confidence interval can be employed in multiple ways forgene selection depending upon the objective of the analysis. If differential
Page 13gene expression analysis is used to choose a small set of genes for validation bythe laboratory scientist at the bench, then a (1âˆ’Î±) lower confidence bound forthe p-value threshold parameter could be used for gene selection. Typically,RT-PCR, northern blots, or immunohistochemistry are used to validate thedifferentially expressed genes. Alternatively, if the goal is to use the error rateanalysis as a screening tool to weed out uninteresting genes for subsequentclassification or prediction analysis, then a liberal approach using a (1 âˆ’ Î±)upper confidence bound for Î³(Ï€0;Î²) would be suitable.The original localized prostate cancer data analysis applied differential geneexpression analysis as a filter to select candidate genes for model buildingand prediction (Stephenson et al. 2005). Using the p-value mixture model,the estimated p-value threshold is 2.1 ï¿½ 10âˆ’3 for a FDR level equal to 0.05.Accounting for the variability and dependency in the gene expression data,the interval width from the 95% confidence interval for the p-value thresholdparameter is 2.9ï¿½10âˆ’3, which is substantial relative to the threshold estimate.The 95% upper confidence bound for the p-value threshold parameter is 3.8ï¿½10âˆ’3. For the prostate cancer p-value gene list, if the threshold estimate wasused as the filter, 3  http://www.nuokui.com/pdf/OpD_M5xNBb9I.html  67 genes would be selected for further analysis. In contrast,the 95% upper confidence bound filter would incorporate 575 genes for themodel building component of the analysis. Thus, when using the FDR as afilter, accounting for the variability provides a more liberal, but rational, geneselection mechanism.It is interesting to note the effect of the dependence assumption on theselection mechanism. Under the assumption that the gene expression valueswere independent, the interval width from the 95% confidence interval forthe p-value threshold parameter is 4.6 ï¿½ 10âˆ’4, approximately one-eighth theinterval width of the threshold parameter estimate under weak dependence.Not surprisingly, the independence assumption used in conjunction with 22,283genes, provides a justification for the use of the threshold estimate as the filter,with little penalty for substituting the estimate for the parameter value. Forthis data set, however, the dependence between genes is an important aspectof the analysis. Thus, the uncertainty of the location of the FDR and p-valuethreshold parameters should be accounted for in the gene selection analysis.
Page 14Finally, an alternative approach is to infer the asymptotic FDR parameterfor a given p-value threshold parameter. Gene selection based on the p-valuethreshold equal to 0.05, would produce an asymptotic FDR estimate equal to0.240 with an estimated standard error equal to 0.030. Thus, the probabilitya selected gene is not differentially expressed may be as high as 0.300.4SimulationsA series of simulations were performed to assess the adequacy of the point andinterval estimates of the limiting FDR and the p-value threshold parameters.A two-sample t-test was used to compute the p-value for each of 10000 â€˜genesâ€™.The two-group comparison was based on either 20 or 40 subjects per group.Within each group, the expression data for each gene were generated indepen-de  http://www.nuokui.com/pdf/OpD_M5xNBb9I.html  ntly and identically distributed from either a normal or log-Weibull family.For each gene in group 1, a vector of n1 independent identically distributedmean zero and variance 1 random variables were generated. For each gene ingroup 2, a vector of n2 independent identically distributed random variableswere generated with either mean zero and variance 1 or mean 2 and variance1. The probability that the n2 vector components had mean 2 was set equal to1 âˆ’ Î». The parameter Î» represents the proportion of true null hypotheses andwas chosen to equal 0.3,0.6,0.9 for the simulations. Within each subject,a block dependence structure between genes was generated. The block sizewas 500, with equal correlation Ï� between genes within a block. The valuesof Ï� used in the simulations were 0,0.3,0.6. This correlation represents am-dependence structure and satisfies the weak dependence conditions. Fivehundred replications were run for each simulation.The results of the simulations are presented in Tables 1 and 2. In general,the level of correlation between genes did not influence the bias or coverageestimates. For both the FDR and p-value threshold estimates, the bias in-creased as the parameter moved away from zero. The log-Weibull simulationswere less accurate than the normal simulations.
Page 15Table1.Thecolumnsinthetablerepresent:theproportionoftruenullhypotheses(Î»),thelimitingFDRandp-valuethreshold(PVT)parameters,theblockcorrelationparameter(Ï�),thebias(ï¿½10
3
)oftheestimatesoftheseparameters,andtheempirical95%coverageprobabilityoftheseparameters.Thesamplesizeisfortyobservationspergroup.Ï�=0.0Ï�=0.3Ï�=0.6Î»parametervalueBiasï¿½10
3
CoverageBiasï¿½10
3
CoverageBiasï¿½10
3
CoverageNormaldata0.3FDR=0.021-0.0240.960-0.0140.9520.0130.920PVT=0.1230.2000.9620.1420.946-0.0210  http://www.nuokui.com/pdf/OpD_M5xNBb9I.html  .9260.6FDR=0.047-0.0890.9420.0340.9480.0820.928PVT=0.0530.0630.942-0.0040.946-0.0300.9200.9FDR=0.310-0.0270.9220.6970.9520.0820.914PVT=0.0060.0060.924-0.0150.9500.0030.918log-Weibulldata0.3FDR=0.021-0.0050.958-0.0060.9420.0180.926PVT=0.1230.0830.9660.0960.948-0.0540.9180.6FDR=0.047-0.0440.9400.0520.9320.0940.928PVT=0.0530.0390.942-0.0140.932-0.0370.9240.9FDR=0.3100.1600.9220.7660.9500.1520.918PVT=0.0060.0000.928-0.0170.9500.0010.914
Page 16Table2.Thecolumnsinthetablerepresent:theproportionoftruenullhypotheses(Î»),thelimitingFDRandp-valuethreshold(PVT)parameters,theblockcorrelationparameter(Ï�),thebias(ï¿½10
3
)oftheestimatesoftheseparameters,andtheempirical95%coverageprobabilityoftheseparameters.Thesamplesizeistwentyobservationspergroup.Ï�=0.0Ï�=0.3Ï�=0.6Î»parametervalueBiasï¿½10
3
CoverageBiasï¿½10
3
CoverageBiasï¿½10
3
CoverageNormaldata0.3FDR=0.0210.0790.9480.0620.9560.0360.948PVT=0.123-0.4140.954-0.3100.948-0.1590.9440.6FDR=0.047-0.0160.9540.1840.948-0.0090.934PVT=0.0530.0220.952-0.0840.9480.0200.9360.9FDR=0.3100.1410.952-1.1020.950-0.7670.934PVT=0.0060.0010.9460.0350.9620.0270.944log-Weibulldata0.3FDR=0.0210.5040.8060.2810.9060.2100.934PVT=0.123-2.8930.792-1.6000.886-1.1590.9260.6FDR=0.0470.9580.8940.7170.9320.4400.924PVT=0.053-0.4970.890-0.3690.9140.2190.9220.9FDR=0.3103.2740.9381.0590.9661.5420.926PVT=0.006-0.0830.928-0.0240.956-0.0350.920
Page 17In Table 1, with forty subjects per group, the bias remained small and the95% empirical coverage was uniformly good for all the simulations examined.In Table 2, however, with twenty subjects per group, the bias sometim  http://www.nuokui.com/pdf/OpD_M5xNBb9I.html  es be-came large and had a negative impact on the coverage estimate, particularlyin the log-Weibull simulations.Additional simulations were run to explore the impact of violating the weakdependence assumption. Within each subject, all 10000 genes were equally cor-related. The correlations examined were Ï� = 0.2,0.4,0.6. For the normalsimulations with 40 subjects per group, the simulations resulted in a signif-icant percentage of negative variance estimates for the FDR estimates. Thepercentage of replicates within a simulation that resulted in a negative vari-ance estimate ranged from 15% to 50%. Thus, the proposed methodology isnot robust to a strong dependence structure.5General CommentsA mixture model is proposed to determine a subset of genes associated withan outcome variable. Since the observed p-values used in the mixture modelare derived from the asymptotic normality of the test statistic, this methodis not confined to a specific test statistic or outcome variable type. The pro-posed methodology can be applied to a test statistic based on a comparisonbetween groups (Studentâ€™s t-statistic, Wilcoxon rank sum statistic, the logrank statistic, or their k-sample analogs), a test of association between vari-ables (Pearsonâ€™s correlation coefficient or Kendallâ€™s Tau), regression analysesor a multilevel factorial analysis.The accuracy of the proposed methodology is a function of the accuracyof the asymptotic normality of the test statistic and the weak dependenceassumption. We believe, however, there is a growing recognition that theinability to validate many gene expression analyses is a function of the limitednumber of samples in these analyses. Thus, it is our expectation that futuregene expression studies will be based on larger sample sizes, enabling theasymptotic normality assumption to be justified on a greater proportion of
Page 18studies.The effect of within subject gene   http://www.nuokui.com/pdf/OpD_M5xNBb9I.html  expression dependence on FDR measuresis a current subject of research. Qui et al. (2005) demonstrated that depen-dence can impact the variability of an FDR measure. Efron (2005), using a teststatistic mixture density, demonstrated that strong dependence can producea significant deviation between the empirical and theoretical null componentof the mixture density. The resulting bias in the FDR estimate may be re-duced by adapting the null density to the observed data. For the p-valuemixture density, this could entail replacing the standard Uniform null densitywith a Beta (Î¾,Î¸) null density in the quasi-likelihood. Note that the standardUniform null density is the special case Î¾ = Î¸ = 1. Whether this generaliza-tion produces a less biased FDR and p-value threshold estimate under strongdependence will be the subject of future research.Strong dependence relationships such as exchangeability (Qui et al. 2005)and positive regression dependence (Benjamini and Yekutieli 2001) appear tohave an adverse effect on the FDR measure and do not hold for the methodol-ogy presented in this paper. In contrast, under weak dependence, our simula-tions demonstrate that the FDR and p-value threshold estimates are accurate.What remains unclear is whether weak dependence is congruent to the conceptof genetic pathways and hence whether it is sufficient to approximate the geneexpression correlation structure. If weak dependence is not sufficient it maybe possible to transform the expression data in the preprocessing algorithmprior to performing the proposed FDR analysis.Our measure of the FDR differs from the conventional measure proposedin Benjamini and Hochberg (1995). Their FDR measure is based on a fixednumber of tests performed; we have modified the FDR to present its limit-ing value. When the marginal p-values are generated from a single mixturedistribution, the asymptotic FDR for a given threshold Î³, is defined as   http://www.nuokui.com/pdf/OpD_M5xNBb9I.html  theprobability a gene is not differentially expressed given its p-value is less thanÎ³. A benefit of the asymptotic FDR is the creation of an asymptotic pivotalstatistic that is used to create a confidence interval for either the asymptoticFDR parameter, or its inverse function, the p-value threshold parameter. Theconfidence intervals are used to provide control of the error rate with a high
Page 19level of confidence or as a liberal gene filter for subsequent statistical analysesof the gene expression data.An alternative error rate analysis is based on controlling the tail probabilityfor the proportion of false rejections. The properties of this error rate estimate,also known as the proportion of false positives (PFP) or the false discoveryproportion (FDP), have been studied for both independent and dependentgene expression values (Korn et al. 2004, Genovese and Wasserman 2004, vander Laan et al. 2004). As noted in Genovese and Wasserman (2004), the FDPcan be written as a function of the chosen threshold Î³0S(Î³0) =âˆ‘
g
I(Pg â‰¤ Î³0)I(Dg = 0)âˆ‘
g
I(Pg â‰¤ Î³0),where it is assumed that at least one p-value is below the threshold Î³0. Aconnection between the tail probability for the FDPPr[S(Î³0) > c]and a confidence bound for the asymptotic FDR can be obtained using thecentral limit theorem assumption, G1/2[S(Î³0)âˆ’Ï€(Î³0)] converges in distributionto a mean zero normal random variable, with asymptotic variance denotedby W(Î³0) and the asymptotic FDR represented as Ï€(Î³0). The relationshipbetween the two error rate analyses is realized by substitutingÏ€(Î³0)  zqW1/2(Î³0)G1/2,for c in the FDP tail probability, producing a (1 âˆ’ q) upper confidence boundfor the asymptotic FDRS(Î³0) âˆ’zqW1/2(Î³0)G1/2.Finally, in this paper an empirical criterion was used to group genes intothe dependent sets for the asymptotic variance calculation. As our under-standing of the gene environment con  http://www.nuokui.com/pdf/OpD_M5xNBb9I.html  tinues to improve, dependent gene setsmay be established from biological determinants, such as through linkage oftheir gene function, location in the cell, or involvement in the biological pro-cess. One source currently available to establish these connections is the gene
Page 20ontology consortium website (www.geneontology.org). As knowledge of geneinteractions increase, the dependency classification can be carried out usingexternal databases.Appendix: Derivations of the asymptotic properties of the quasi-likelihood estimates1)Ë†Î²
p
â†’ Î²0The proof will use the following arguments.The log quasi-likelihood is defined as the sum of log p-value mixture densitiesLG(Î²) =
G
âˆ‘
g=1
logÎ»   (1 âˆ’ Î»)12Ï†Ï„,1(Î¦âˆ’1(1 âˆ’ pg/2))Ï†0,1(Î¦âˆ’1(1 âˆ’ pg/2)).where Î² = (Î», Ï„).It follows that for Î²0, the true value of Î²,E[ âˆ‚âˆ‚Î²Gâˆ’1LG(Î²)]
Î²=Î²0
= 0E[ âˆ‚2âˆ‚Î²2Gâˆ’1LG(Î²)]
Î²=Î²0
is negative definite.Let N(Î²0) denote a bounded neighborhood around Î²0 and assume Gâˆ’1LG(Î²)and its derivative are uniformly bounded in N(Î²0).Define Ï�(Î²) = limGâ†’âˆž Gâˆ’1LG(Î²).Then for Î´ > 0,sup
Î²:Î²âˆ’Î²0 >Î´
Ï�(Î²) < Ï�(Î²0)(A.1)
Page 21Proof:Since Ë†Î² is the maximum quasi-likelihood estimate,Gâˆ’1LG(Ë†Î²) â‰¥ Gâˆ’1LG(Î²0)By the assumptions above, Gâˆ’1LG(Î²) converges uniformly to Ï�(Î²) for Î² âˆˆN(Î²0). Thus for Ïµ > 0,Gâˆ’1LG(Ë†Î²) â‰¥ Ï�(Î²0) âˆ’ ÏµAdding and subtracting Ï�(Ë†Î²) to the left side of the inequality and again usingthe uniform convergence argumentÏ�(Ë†Î²) â‰¥ Ï�(Î²0) âˆ’ Ïµwhich by (A.1) cannot occur unless Ë†Î² â†’ Î²0.2)âˆšG(Ë†Î² âˆ’ Î²0)
D
â†’ N(0,Î£)Proof:Let SG(Î²) = âˆ‚LG(Î²)/âˆ‚Î² and AG(Î²) = âˆ‚2LG(Î²)/âˆ‚Î²âˆ‚Î²T . Under the as-sumption of weak dependence, the weak law of large numbers and a Taylorexpansion are applied to produceG1/2(Ë†Î² âˆ’ Î²0)=[Gâˆ’1AG(Î²0)]âˆ’1Gâˆ’1/2SG(Î²0)   op(1).It follows thatvar[G1/2(Ë†Î² âˆ’ Î²0)] = [Gâˆ’1AG(Î²0)]âˆ’1[Gâˆ’1varSG(Î²0)][Gâˆ’1AG(Î²0)]âˆ’Tand therefore, using the central limit theorem for  http://www.nuokui.com/pdf/OpD_M5xNBb9I.html   weakly dependent data,âˆšG(Ë†Î² âˆ’ Î²0)
D
â†’ N(0,Aâˆ’1V Aâˆ’T ).
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