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The Plan â€“ Part I (70 minutes)
âˆŽ The Mathematical Models
â�‘ 2-stage Stochastic Programs with Recourseâ�‘ T-stage Stochastic Programs with Recourseâ�‘ Non-anticipativity and Measurability of Decisions
âˆŽ Energy Infrastructure Applications of SPâˆŽ Foundations for 2-stage Programs
â�‘ Subgradients of the Expected Recourse Functionâ�‘ Subgradient and Stochastic Quasi-gradient Methodsâ�‘ Deterministic Decomposition (Kelley/Benders/L-
shaped)
â�‘ Stochastic Decomposition
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The Plan - Part II
âˆŽ Algorithms for T-stage Programs
â�‘ Scenario Decomposition
âˆŽ Progressive Hedging Algorithm
â�‘ Tree-traversal (time-staged) methods
âˆŽ Nested Bendersâ€™ Decomposition & Variants
â�‘ Discrete-time Dynamic Systems (not covered)â�‘ Simulating Optimization (not covered)
âˆŽ Multi-stage Extensions Stochastic Decomposition
âˆŽ Comparative Remarks and Conclusions
The Plan â€“ Part II (70 minutes)
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The Mathematical Models
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2-stage Stochastic Program with Recourse
Deterministic Data
Avoids having to dealwith Zero Prob. Events
Stochastic Data
SP as aLarge-ScaleLinear Program
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T-stage Stochastic Program with Recourse
a.s.
Nested Expectation Formulation â€¦ a la DPDeterministic DataStochastic DataNon-anticipative
Page 7ddd
What do we mean by Non-anticipativity?
Non-anticipativePath 1Path 2
Since paths 1 and 2 share the same history until t=2They must also share the same decisions until t=2ScenarioTree
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Observations of the Decision Process
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Probabilistic Language: Measurability
is measureable wrt to Ïƒ-algebra â„±tIf we look at     as astochastic processthen one can assign probability measures(on decisions) thatare consistent withthe stochasticprocess embedded inthe scenario tree.
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What does this mean for algorithms?
Non-anticipativeFor Multi-stage SP Models, it is necessary to track  decisionsat each node of the scenario tree.  So, forMulti-stage SD, we will track decisions by node  number.
ScenarioTree
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Matching mathematical models with algorithms
âˆŽ Stochastic LPs as Linear Programs
â�‘ Specialized Facto  http://www.nuokui.com/pdf/OCUQ31TCoDfI.html  rization Methods for Simplex
and Interior Point Methods (few scenarios)
âˆŽ Scenario Decomposition
â�‘ Progressive Hedging Algorithm
âˆŽ Tree-traversal (time-staged) methods
â�‘ Nested Bendersâ€™ Decomposition & Variants
âˆŽ Simulating Optimization (time permitting)
â�‘ Stochastic Decomposition
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Energy InfrastructureApplications of SP
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Why Stochastic Programming in PowerSystems? Long History
âˆŽ Reliability Metrics in wide-spread use
â�‘
Loss of Load Probability (LOLP)
â�‘
Loss of Load Expectation (LOLE)
â�‘
Expected Loss of Load Duration (ELOLD)
âˆŽ Some SP References Prior to 2000
â�‘
Murphy, Sen and Soyster (1981) â€¦ Generation  Planning
â�‘
Louveaux and Smeers (1981) â€¦ Generation Planning
â�‘
Sherali, Sen and Soyster (1984) â€¦ Electricity Prices
â�‘
Prekopa and Boros (1989) â€¦ System Reliability
â�‘
Hobbs and Maheshwari (1990) â€¦ System Planning
â�‘
Frauendorfer, Glavitsch, and Bacher (1992)  â€¦ System Operations
â�‘
Takriti, Birge and Long (1996) â€¦ Stochastic UC â€¦ SMIP
â�‘
Takriti , Kassenbrink and Wu (2000) â€¦ Electricity Contracts
âˆŽ Conference of Probabilistic Methods Applied to Power Systems
(since the early 1990â€™s) 
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Economic Dispatch Problem
â�‘ Next generation power grids highly dynamicâ–ª Distributed Storageâ–ª Cogenerationâ–ª Large Scale Renewable Generationâ–ª Real-time Pricingâ�‘ Mandates more proactive and fast operational systems likeEconomic Dispatch.â�‘ The ED system updates the output levels of the committedgenerators to match the load demands in a cost-optimal manner.â–ª Present ED systems uses forecast of the order of 2 hours(myopic).â–ª Steep trends like wind ramping deteriorate the ED system.â–ª Increasing the foresight and resolution of the ED problem comesat the expense of additional computat  http://www.nuokui.com/pdf/OCUQ31TCoDfI.html  ional complexity.
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Economic Dispatch Problem
LoadsWindGeneratorThermalGenerators
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ED Problem Formulation Features(V. Zavala, Argonne National Labs)
âˆŽ 2-stage model of a T-period application
â�‘ Decisions for first stage â€¦ played out over the next T-1 periods
as the second stage
â�‘ Randomness in second-stage is wind
âˆŽ Each stage has Cost of Generation and following
constraints
â�‘ Generation capacity constraintsâ�‘ Power Flowâ�‘ Flow Balanceâ�‘ Power Flow Boundsâ�‘ Bus-angle Boundsâ�‘ Wind ramp constraints (randomness)â�‘ Generation ramp constraints
âˆŽ First stage only has generation ramp constraints (bounds)
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Foundations for 2-stagePrograms: A Review of Basics
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âˆŽ Let     be a random variable defined on a
probability space
âˆŽ Then â€œstaticâ€� formulation of a stochastic
program is given by
âˆŽ Why call it â€œstaticâ€�?
â�‘
(the outcome) is revealed once, and the restof the decision-model becomes deterministic
â�‘ This process may be repeated many times.
The commonly stated 2-stage SLP(will be stated again, as needed)
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The Recourse Function and its Expectation
âˆŽ Usually, the matrix C
1
is NOT fixed â€¦ For ourpresentation, we will make this assumption.  This iscalled the â€œFixed-Recourseâ€� assumption.
âˆŽ Assuming that h(x
0;Ï‰) is finite, LP duality implies
âˆŽ Also LP theory => h(â—�;Ï‰) is piecewise linear, convex
and moreover,
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Subgradient Method(Shor/Polyak/Nesterov/Nemirovskyâ€¦)
âˆŽ At iteration k let     be givenâˆŽ LetâˆŽ Then,    
where     denotesthe projection operator on the set     of thedecisions     and,
âˆŽ Note that     is very difficult to compute!  â€¦.
Enter SQG!  Use an unbiased estimate of
âˆŽ How? Use a sample size of N http://www.nuokui.com/pdf/OCUQ31TCoDfI.html  ark
:
Interchange of Expectationand Subdifferentiation isrequired here
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Stochastic Quasi-gradient Method (SQG) (Ermoliev/Gaivoronski/â€¦)
âˆŽ At iteration k let     be givenâˆŽ Replace     of the previous slide with its
unbiased estimate
âˆŽ Then,
with    and, in addition:
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âˆŽ Strengths
â�‘ Easy to Program, no master problem, and easily
parallelizable
âˆŽ Weaknesses
â�‘ Non-adaptive step-sizes (e.g. Constant/k)
âˆŽ
Needs a lot of fine-tuning to determining step-size (e.g.Constant)
â�‘ Convergence
âˆŽ
Method makes good progress early on, but like othersteepest-descent type methods, there is zig-zagging behavior
â�‘ Need ways to stop the algorithm
âˆŽ
Difficult because upper and lower bounds on objective valuesare difficult to obtain
Strengths and Weaknesses of Subgradient Methods
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âˆŽ Let     be a random variable defined on a
probability space
âˆŽ Then â€œstaticâ€� formulation of a stochastic
program is given by
Kelleyâ€™s Cutting Plane/Bendersâ€™/L-shapedDecomposition for 2-stage SLP (Recall Problem)
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KBL Decomposition (J. Benders/Van Slyke/Wets)
âˆŽ At iteration k let     , and    
be given. Recall
âˆŽ Then defineâˆŽ LetâˆŽ Then,    
Constant Term of theSupporting Hyperplaneâ€œNormalâ€� of the Supporting Hyperplane(same as the subgradient method)
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KBL Graphical Illustration
Expected RecourseFunction
Approximation: f
k-1
Approximation: f
k
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Comparing Subgradient Method and KBL Decomposition
âˆŽ Both evaluate subgradientsâˆŽ Expensive Operation (requires solving as many second-stage
LPs as there are scenarios)
âˆŽ Step size in KBL is implicit (user need not worry)âˆŽ Master program grows without bound and looks unst  http://www.nuokui.com/pdf/OCUQ31TCoDfI.html  able in
the early rounds
âˆŽ Stopping rule is automatic (Upper Bound â€“ Lower Bound â‰¤ Îµ)âˆŽ KBLâ€™s use of master can be a bottleneck for parallelization
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Regularization of the Master Problem(Ruszczynski/Kiwiel/Lemarechal â€¦)
âˆŽ Addresses the following issue:
â�‘ Master program grows without bound and looks unstable
in the early rounds
âˆŽ Include an incumbent     and a proximity
measure from the incumbent, using Ïƒ >0  as aweight:
âˆŽ Particularly useful in case of Stochastic
Decomposition.
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Where do we stand at this point in the Lecture?
FeatureSubgradientMethodSQGAlgorithmKBLDecompositionSubgradient orEstimation
AccurateEstimationAccurate
Step LengthChoice Required
YesYesNo
Stopping Rules
UnknownUnknownKnown
ParallelComputations
GoodGoodNot so good-Good
ContinuousRandom Variables
NoYesNo
First-stage IntegerVariables
NoNoYes
Second-stageInteger Variables
NoNoNo
Of course for small instances, we can always try deterministic equivalents!  
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Stochastic Decomposition (SequentialSampling)  Higle/Sen
âˆŽ Allow arbitrarily many outcomes (scenarios)
including continuous random variables
âˆŽ Requirement: can provide a simulatorâˆŽ Assume: cost coefficients are deterministic
(although random costs will be allowed soon)
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Central Question: Scalability of eachiteration
âˆŽ If the number of scenarios is large, can we
afford to solve all second-stage LPs to obtainaccurate subgradient estimates?
â�‘ No!
âˆŽ Put another way: What is the smallest
number of LPs we can solve in each iteration,and yet guarantee asymptotic convergence?
â�‘ The SD answer: 1!
âˆŽ How?
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Approximating the recourse functionin SD
âˆŽ  http://www.nuokui.com/pdf/OCUQ31TCoDfI.html   At the start of iteration k, sample one more
outcome â€¦ say Ï‰k independently  of  
âˆŽ Given     solve the following LP
âˆŽ Define    
and calculate for
âˆŽ Notice the mapping of outcomes    
to finitelymany dual vertices.  
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Forming the approximation of theExpected Recourse Function.
âˆŽ The estimated â€œcutâ€� in SD is given byâˆŽ To calculate this â€œcutâ€� requires one LP
corresponding to the most recent outcome and the â€œargmaxâ€� operations at the bottom ofthe previous slide
âˆŽ In addition all previous cuts need to be
updated â€¦ to make old cuts consistent withthe changing sample size over iterations.
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Many more SD details (are skipped) â€¦ seeHigle and Sen (1999)
âˆŽ Updating previously generated subgradientsâˆŽ Defining incumbentsâˆŽ Using regularized approximationsâˆŽ Dropping subgradients (finite master)âˆŽ Stopping rules â€¦ three phases
â�‘ Set of dual vertices stops changingâ�‘ Incumbent objective stabilizesâ�‘ Bootstrapped estimate of distribution of duality
gap is acceptably small
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Further comparisons including 2-stage SD
FeatureSQG AlgorithmKBLDecompositionStochasticDecompositionSubgradient orEstimation
EstimationAccurateEstimation
Step Length ChoiceRequired
YesNo NeededNot Needed
Stopping Rules
UnknownWell StudiedPartially Solved
ParallelComputations
GoodNot so good-GoodNot known
ContinuousRandom Variables
YesNoYes
First-stage IntegerVariables
NoYesYes
Second-stageInteger Variables
NoNoAvailable in aDissertation
Of course for small instances, we can always try deterministic equivalents!  
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Comparisons between SD and SAA(Higle/Zhao accepted for publication)
ProbApprox. ValueSeconds
20Term
(40 rvs)
Reg. SD 254,581(79)259.30  http://www.nuokui.com/pdf/OCUQ31TCoDfI.html  (31.85)
20Term
SAA 254,512(55)approx.10,000
Fleet20_3
(200 rvs)
Reg. SD 141,749(18)293.57(2.45)
Fleet20_3
SAA 141,654(6.5)approx.12,000
SSN
(80 rvs)
Reg. SD 10.26(0.14)7491.81(3728.81)
SSN
SAA10.57(0.28)approx.100,000 
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Why the difference in computational timesbetween SD and SAA?
â�‘ If there are 1000 outcomes in the SAA
approximations, it requires the subproblem LPto be solved for 1000 outcomes in everyiteration.
â�‘ Unlike  SAA, the subproblem in SD is solved
for only one outcome, while approximationsare used for other outcomes (from previousiterations).  This explains the difference incomputational times.
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Comparisons between SQG and SD
âˆŽ Inventory coordination instance (Herer et al 2006)âˆŽ SQG method to solve a small inventory
transshipment problem
â�‘ Find order quantities to minimize total cost of
inventory and transshipment
â�‘ Example has 7 outlets which can ship goods
among themselves, if necessary
â�‘ Demand is normally distributedâ�‘ Herer et al ran the SQG method for K=3000
iterations, using subgradient estimates withN=1000 simulated outcomes in each iteration
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SQG trajectory of order quantities
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SD Trajectory of Order Quantities
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Optimal Values from 20 SD Runs
Page 41ddd
Iterations may vary  depending on the seed
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Running times for SD and SQG
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Multi-stage StochasticProgramming Algorithms
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Non-anticipative  Solutions by Scenario(Rockafellar/Wets)
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ScenarioTree
Non-anticipative Solutions by Node
Nodal Variables: X
n
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ScenarioTree
Relaxing Nonanticipativity Creates ClairvoyantDecisions
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Progressive Hedging Algorithm: Coordination of Clairvoyant Decisions
âˆŽ The constraints may be considered a graph
X
n
â€“ (x
t
)
Ï‰
= 0
X
0
X
1
X
2
X
3
X
4
X
5
X
6
No Non-anticipativityConstraints for theTerminal Stage
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Dualizing for Progressive Hedging
X
0
X
n
â€“ (x
t
)
Ï‰
=0
Primal Constraints
X
n
Free
= 0
  http://www.nuokui.com/pdf/OCUQ31TCoDfI.html  Dual Constraints
Time of node n
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Dualizing for Progressive Hedging
X
1
X
2
Time of node n
= 0
Primal ProblemLagrangian Dual Problem
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Regularized of the Lagrangian Dual
Regularized Lagrangian Dual Problem
Where     and     are given at the start of any iteration.Also assume that    satisfies dual feasibilityThe Progressive Hedging Strategy is Really Simple:  FixTwo of the Three Categories of Variables, and Optimizethe Third in the following order: Primal     , followed bythe Primal X (the conditional mean) and finally solve for    .       .  Now Repeat this Procedure until the change inestimated solution is within acceptable range.
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Summary of the PHA Process
âˆŽ LetâˆŽ Note that this minimization only involves data
for the outcome
âˆŽ Next â€œminimizingâ€� with respect to X, gives a
new estimate     for the conditionalexpectations.  This is simply the conditionalexpectation of the new vectors
âˆŽ Finally, update the dual multipliers:
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Comments on the PHA Process
âˆŽ Coordination process has no master problem â€“
making it highly suited for parallelization
âˆŽ The Lagrange Multipliers provide ex-post 
estimates of prices or subsides for every scenario
â�‘ But very large search spaces because of exponentially
many dual variables.
âˆŽ The method has also been used as a heuristic
for Stochastic Mixed-Integer Programs (seeWatson, Wets and Woodruff, as well as PySP(part of Coopr at Sandia).
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ScenarioTree
Nested Bendersâ€™ Decomposition(Birge/Gassman/Dempster â€¦)
Remember:  All data and conditional probabilitiesof the Multi-stage Stochastic LP are supplied 
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Nested Bendersâ€™ Decomposition(Birge/Gassma  http://www.nuokui.com/pdf/OCUQ31TCoDfI.html  n/Dempster â€¦)
Information Visualization
â€¢ Upstream nodes placeâ€œordersâ€�  based on alocal decision (e.g. x
22
)
â€¢ Downstream nodesrespond with prices (i.e. subgradients)  andfeasibility facets
x11x21x12x22x32x42x13x23x83
ScenarioTree
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Notation: j  is an index for a stagei is an index of a node in stage ji- (â€œi minusâ€�) is an upstream node.
Each Node of the Tree will â€œHouseâ€� an LP
Prices (i.e. subgradients)supplied by downstreamnodesFeasibility facetssupplied  by downstreamnodes
â€œOrdersâ€œ fromupstream
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â€œNestedâ€� Bendersâ€™ Method
âˆŽ Traverse the tree solving LPs whenever
feasible.  In this case, pass a Subgradient tothe upstream node
âˆŽ If any LP is infeasible, pass a â€œFeasibility
Facetâ€� to the upstream node.
âˆŽ Question? 
â�‘ Can this algorithm be run via asynchrounous
processing,  and still converge?
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Comments on â€œNestedâ€� Bendersâ€™
âˆŽ Has been extended to sampling the tree (but
you still work the same â€œprobabilityâ€�).  So,asymptotic convergence does NOT rely onsubgradients that are stochastic  (Philpottand Guan 2008)
âˆŽ Extensions to Stochastic Subgradients are
right around the corner (under revision)
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