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Page 4Abstract
Electrical impedance tomography (EIT) is an imaging technique that reconstructs the internal electricalproperties of an object from boundary voltage measurements. In this technique a series of electrodes isattached to the surface of an object and alternating current is passed via these electrodes and the resultingvoltages are measured. Reconstruction of internal conductivity images requires the solution of an ill-conditioned nonlinear inverse problem from the noisy boundary voltage measurements. Such unreliableboundary measurements make the solutions unstable. To obtain stable and meaningful solutionsregularization is used. This thesis deals with the EIT problem from the perspective of both imagereconstruction and hardware design. This thesis consists of two main parts. The first part covers thedevelopment of 3D image reconstruction algorithms for single and multi-frequency EIT. The second partrelates to the design of novel multi-frequency hardware and performance testing of the hardware using thedesigned phantom.Three different approaches for image reconstruction of EIT are presented:1) The dogleg algorithm is introduced as an alternative method to Levenberg-Marquardt for solving the EITinverse problem. It was found that the dogleg technique requires less computa  http://www.nuokui.com/pdf/LGmCyEnRE3nI.html  tion time to converge to thesame result as the Levenberg-Marquardt.2) We propose a novel approach to build a subspace for regularization using a spectral and spatial multi-frequency analysis approach. The approach is based on the construction of a subspace for the expectedconductivity distributions using principal component analysis (peA). The advantage of this technique isthat priori information for regularization matrix is determined from the statistical nature of the multi-frequency data.3) We present a quadratic constrained least square approach to the EIT problem. The proposed approach isbased on the trust region subproblem (TRS), which uses L-curve maximum curvature criteria to fmd aregularization parameter. Our results show that the TRS algorithm has the advantage that it does not requireany knowledge of the norm of the noise for its process.4) The second part of thesis discuses the designing, implementation, and testing a novel 48-channel multi-frequency EIT system. The system specifications proved to be comparable with the existing EIT systems
iii 
Page 5with capability of 3-D measurement over selectable frequencies. The proposed algorithms are [mally testedunder experimental situation using designed EIT hardware. The conductivity and permittivity images fordifferent targets were reconstructed using four different approaches: dog-leg, principal component analysis(PCA), Gauss-Newton, and difference imaging. In the case of the multi-frequency analysis, the PCA-basedapproach provided a substantial improvement over the Gauss-Newton technique in terms of systematicerror reduction. Our EIT system recovered a conductivity value of 0.08 Sm-l for the 0.07 Sm-l piece ofcucumber (14% error).
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Page 14CHAPTER IIntroduction
1. Background
This thesis discusses hardware design and image reconstruction methods in Electrical ImpedanceTomography (EIT). EIT is an imaging modality which reconstructs images of the distribution of theelectrical properties of an object from boundary measurements. In this modality an array of electrodes isattached to the surface of the object under investigation, and electrical currents are passed to the electrodes.The electrical current is an alternating current whose amplitude is between I-lOrnA and frequency between1-100 kHz. The stimulation results in electric potentials that are measured on the surface of the object usingthe same or additional electrodes. The voltages measured on the boundary are a function of the object's  http://www.nuokui.com/pdf/LGmCyEnRE3nI.html  electrical properties and the electrical current. An estimation of the spatial distribution of the electricalproperties inside of the volume is reconstructed by implementing varying current injection strategies andvoltage measurement sequences. In a practical situation, the simultaneous measurement of both theamplitude and the phase of boundary voltages can result in images of electrical conductivity and permittivitydistributions inside the volume.EIT has numerous applications in both industrial and medical areas. In industry, EIT has been used to imagefluid flows in pipelines and as a non-destructive test tool such as crack detection (Dickin et al., 1996;Alessandrini et al., 1998). A variation of the technique has also been used for landmine detection by themilitary (Wexler et al., 1985). In medical applications, EIT is used for monitoring cardiac function,monitoring brain function, detection of haemorrhage and possibly stroke, gastric imaging, breast cancerdetection, and functional imaging of the thorax (Cherepenin et ai., 2002; Eyuboglu et ai., 1989; Gibson etal., 2000; Bagshaw et al., 2003; Kunst et al., 1998; Smallwood et al., 1994). It is the interest of this thesis todevelop EIT for medical imaging. Ultimately our laboratory's focus will be the detection and possiblydiagnosis of breast cancer.This is motivated by the great potential of EIT to be used in .clinical environments as a diagnostic andmonitoring modality. However currently, due to several limitations of EIT, it has not yet been used as aroutine medical diagnostic tool in everyday clinical practice. Primarily, EIT suffers from a low spatialresolution, and is susceptible to noise and electrode errors. The spatial resolution of EIT is relatively poor incomparison to other modalities, such as, magnetic resonance imaging (MRJ) and Computed X-rayTomography (CT). In comparison however, EIT is a technique that does not use ionizing radiation,  http://www.nuokui.com/pdf/LGmCyEnRE3nI.html   it is safe 
Page 15and non-invasive, and is very portable. Moreover, it is much more inexpensive compared to other imagingmodalities such as MR!, CT and positron emission tomography (PET).The mathematical formulation and uniqueness of the EIT problem was first addressed by Calderon(Calderon, 1980). Since then several different approaches for solving the EIT problem have been proposed.A problem is called a well-posed problem if it has a unique solution (uniqueness) and if the solution dependscontinuously on the data (stability). In other words, small changes in the data must not cause instability inthe solution. A problem is called ill-posed if at least one of the three conditions (existence, uniqueness,stability) is not satisfied. The EIT problem is categorized as an "ill-posed" problem (Hansen ,1998).The EIT reconstruction problem is a nonlinear ill-posed inverse problem, and special approaches must beimplemented to recover a stable solution. As EIT is an ill-posed problem, small perturbations in themeasured boundary voltages can cause arbitrarily large errors in the estimated internal electricalconductivity. One of the most common techniques for EIT image reconstruction is the minimization of thesquared norm of the difference between the measured boundary voltages and the calculated boundaryvoltages through a mathematical model (Vauhkonen, 1997). However, because of the ill-posedness of theEIT problem, this optimization process has to adopt particular techniques in order to obtain a stable solution.This modification is called regularization, a process which introduces additional terms into the minimization(Borsic, 2002). This modification removes the ill-posedness of the problem. When the problem isregularized by introducing this additional term, a priori information about the solution is introduced into thereconstruction process.The EIT reconstruction algorithms can be classified into   http://www.nuokui.com/pdf/LGmCyEnRE3nI.html  several categories; static/absolute imaging,dynamic imaging, multi-frequency imaging, and difference imaging. Each of these is intended to image adifferent aspect of the object's conductivity distribution. The aim of absolute imaging is to reconstruct anabsolute conductivity distribution that is achieved by using only a single data set of boundary voltagemeasurements. This kind of image reconstruction needs accurate calculation of simulated voltages forknown conductivity distributions. The calculation of the boundary voltages when the injected currents andthe conductivity distribution are known is referred to as a forward problem. In dynamic imaging, the timevariation of the conductivity distribution is included into the reconstruction process, and reconstruction isupdated after each current injection (Vauhkonen, 1997). In difference imaging, the difference betweenconductivity distributions are created as a result of the difference between two data set measurementscorresponding to two different object conductivity distributions. The purpose of multiple frequency imagingsystems is to reconstruct the frequency variation of conductivity distributions of the target (Griffiths andZhang, 1989).2 
Page 16The utility of EIT for medical applications comes from the large variation in the tissue conductivity orresisitivity of different organs. As shown in Table 1, there is a huge dynamic range of resistivity values fordifferent organs enabling the creation of high contrast images. One such interesting application of EIT formedical purposes is the detection of significant changes in the resistivities caused by circulating blood orinspired air. For these situations the difference imaging method would be an ideal choice as the electrodeartefacts are eliminated. Examples where difference imaging has been used for medical applications are:gastric imaging (Barber 1990, Dijkstra et at., 1993; Smallwood et a  http://www.nuokui.com/pdf/LGmCyEnRE3nI.html  t., 1992) the detection of intrathoracicfluid volumes (Newell et al., 1996), the estimation of cardiac and pulmonary parameters (Brown et aI.,1992; Eytiboglu et at., 1989; Harris et at., 1992; Newell et ai., 1992) and the detection of haemorrhage(Sadleir et ai., 1992; Murphy et ai., 1987; McArdle et aI., 1988). In the following sections, the physics ofthe EIT difference image reconstruction method is discussed.Table 1: Resistivity values for mammalian tissues (Barber and Brown, 1984).TissueCSFBloodLiverHuman arm (longitudinal)Human arm (transverse)Skeletal muscle (longitudinal)Skeletal muscle (transverse)Cardiac muscle (longitudinal)Cardiac muscle (transverse)Neural tissueGray matterWhite matterLung( out-in)FatBoneResistivity (Om)0.651.53.52.46.751.2518.001.64.245.82.846.827.27-23.6327.2166
2. Forward Model and Data Collection in EIT
From the perspective of EIT image reconstruction, a physical model is required to relate the internalconductivity distribution to the boundary voltage measurement. This implies a relationship between themeasured voltages, the injected currents, and the conductivity distribution. The equation for the EITphysical model has been derived from Maxwell's equations (Malmivuo and Plonsey 1995; Doerstling,1995).In order to reconstruct the conductivity distribution through the EIT inverse solution, the forward solution isrequired first. The forward problem is to calculate the boundary voltages when the conductivity distributionand the injected currents are given. Of course initially, this conductivity distribution is the starting valuespecified by a particular model. In the following section the different physical models that are used in the
3 
Page 17forward solution are discussed (Cheng et at., 1989; Pidcock et at., 1995a; Somersalo et at., 1992; Pidcok et
at., 1992b). The most accurate model that has been proposed is the s  http://www.nuokui.com/pdf/LGmCyEnRE3nI.html  o-called complete electrode model
(Polydorides, 2002a). In this thesis the complete electrode model is used as the forward model and it issolved using the [mite element method (FEM). FEM is a feasible technique for solving partial differentialequations with complex geometries (Brenner and Scott, 1994; Miller and Henriquez, 1990; Hinton andOwen, 1979). Lastly, the different current injection and voltage measurement strategies used in EIT arediscussed.
2.1 Physics of the Problem
In the EIT experiment, an array of electrodes, usually 16 or 32, are attached around the object, n, and asmall alternating current of the order of a few rnA with a frequency between 1 kHz-IOO kHz is applied to asubset of electrodes and the resulting voltages are measured on the remaining electrodes. In the following,the physical models for ElI with different boundary conditions are derived. A mathematical model of theproblem is derived from Maxwell's equations
aB
VxE=--
at
aD
VxH=J -
at
(I)(2)Where V x is the curl operator, .!. partial derivative with respect to time, E is the electric field, B is the
at
magnetic induction, H is the magnetic field, J electric current density and D the dielectric displacement.Moreover, in a linear isotropic medium the following relations are validD=ï¿½E(3)
B=,uH
(4)
J=aE
(5)In EIT it is also common practice to further simplify Maxwell's equations. The quasi-static approximation isusually used. The injected currents are assumed to be "slowly varying," so the time-dependence isneglected. Since the frequencies of injected alternating currents are small the quasi-static approximation is avalid assumption (Vauhkonen, 1997). In the quasi-static approximation the time derivative in equations (1)and (2) are zero. Moreover, the electric field is conservative and the conduction currents are dominant withrespect to the displacemen  http://www.nuokui.com/pdf/LGmCyEnRE3nI.html  t currents, such that
VxE=O
(6)4 
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(7)Since V x E = 0 , there is electrical potential u such that
E=-V'u
(8)Taking the divergence of both sides of equation (7) gives
V' . J = V' . (V' x H) = 0
(9)Using equation (5)
V' . (IE = 0
(10)Finally using equation (8), it givesV'ï¿½(aVu) = 0(11)This is the equation that recovers the electric potential u inside the body Q. In order to account for electrodeinteractions within the object, a reasonable and appropriate model should be developed. In the followingsection the boundary conditions, i.e., the electrode models are briefly discussed.
2.2 Electrode Models
In this section a brief description of the four most common electrode models are discussed. This thesis willutilize the Complete Electrode Model which is considered to be the most accurate description of theelectrode and body interaction.
Continuum Electrode Model
The Continuum Model is the simplest of the models used in EIT. The model assumes that there are noelectrodes facing the boundary of the object, but the model assumes that the current density, j, is acontinuous function on the entire boundary of the object. In this case, the relation
J .nl = -J .nl
insideoutside
on anis valid. Here n is the normal vector to the boundary of the object, an.. Furthermore, using equation 8E = -V'u , equation (12) can be recast as a Neumann boundary condition:
(I au = -J . n == j
an
(12)(13)where j is the negative nonnal component of injected current. Equation (13) together with equation (11) iscalled the continuum model.5 
Page 19Gap Model
The gap model assumes discrete electrodes on the surface of an object. The injected currentj is representedas
. au I[
=CY-=-
an A
. au 0

