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Data Analysis and Visualization ofâ€œBig Dataâ€� from HPC
Page 2What is â€œBig Dataâ€�?
â€¢ Big data isâ€¦â€¢ â€œLargeâ€�: Beyond the capabilities of â€œordinaryâ€� techniquesâ€¢ HPC has been doing this for decades:
â€¢ Using datasets from large-scale simulation of physical phenomena
Extracting meaning from largesets of digital information
Page 3Data may be the â€œfourth pillarâ€� of science
Data-drivenEmpiricalTheoreticalComputational
Page 4So whatâ€™s all the hype about?
â€¢ Much of the hype of the last two years has been about extractingmeaningâ€¦
â€¢ â€¦from large unstructured and semi-structured datasetsâ€¢ â€¦from the Business Intelligence communityâ€¢ â€¦using scalable analysis and storage tools like:Hadoop, Cassandra, HBase, Hive, Pig, MongoDB, â€¦
â€¢ Some successes in scientific computing for unstructured data
Page 5Petascale machines are solving important scientificproblems through the generation and analysis of largedatasets
Physics of high-temperaturesuperconducting cupratesChemical structure of HIV viralenvelopeGlobal climate simulation of CO2dynamics and biochemistryBiological conversion of cellulosicfeedstock for biofuelsThree-dimensional simulation ofblood flowCombustion of turbulent lean fuelmixtures
Page 6Current success comes from having tools thatscale to the HPC datasets
â€¢ Analysis methods are generally the same as in serialâ€¢ Itâ€™s the tools and techniques that must scaleâ€¢ SPMD data parallelism has taken us far -> Petascale 
I/O
Decomposeddata set
ParallelAnalysisCode
Rendering/compositing
Page 7Pipeline visualization
Page 8A lot of success has been through data flownetworks (pipelines)
â€¢ Different input data forma  http://www.nuokui.com/pdf/Kq4ar3twverI.html  ts:
â€¢ NetCDF, HDF, text, CSV, PDB, ADIOS, â€¦
â€¢ Different types of data operations:
â€¢ Slicing, resampling, mesh transforms, filtering, â€¦
â€¢ Different ways of drawing on-screen:
â€¢ Pseudocolor, isosurfaces, volume rendering, â€¦
These are independent of each other
Page 9Make these independent modulesThis is adata flow network
â€¢ Data reading
â€¢ Data operationsâ€¢ Data plotting
Page 10Many software systems use data flow networks
â€¢ VTKâ€¢ VisIt, ParaViewâ€¢ AVS/Expressâ€¢ SCIRunâ€¢ COVISEâ€¢ â€¦
Page 11Weâ€™ve scaled to trillions of mesh cells
2T cells, 32K procs
MachineTypeProblem Size# coresJaguarCray XT52T32kFranklinCray XT41T, 2T16k, 32kDawnBG/P4T64kJunoLinux1T16k, 32kRangerSun Linux1T16kPurpleAIX0.5T8k
Since this work, people havesurpassed 8 trillion cells = 20,0003cells.
â€¢ Weak scaling study 2009 (isocontouring,volume rendering): ~63 million cells/core
Page 12The â€œThree Vâ€™sâ€� of big data as applied to HPC
VolumeVarietyVelocity
There areother Vâ€™s:
Veracity, Value,Validity,Voldemort?
Page 13The â€œThree Vâ€™sâ€� of big data as applied to HPC
â€¢ Volume:
â€¢ Increasing mesh resolutionâ€¢ Increasing temporal complexity
â€¢ Variety:
â€¢ Higher-dimensional dataâ€¢ Increasing multi-varianceâ€¢ Complex data modelsâ€¢ Ensembles, parameter studies
â€¢ Velocity:
â€¢ Future hardware constraints will limit I/O
Page 14Data scale limits scientific understanding
â€¢ Spatial resolution increasing in many domains
â€¢ Too many zones to see on screen (with or without high-res Powerwall)
â€¢ Temporal complexity increasing
â€¢ Climate simulations will have 100,000s of time stepsâ€¢ Manually finding temporal patterns is tedious and error-prone
â€¢ Multivariate overload
â€¢ Climate simulations have 200-400 variablesâ€¢ Growing to thousands
â€¢ Iss  http://www.nuokui.com/pdf/Kq4ar3twverI.html  ues of data models and domain-specific data
â€¢ E.g., Multi-group radiation fields
Page 15Common Themes in Mathematics forData
Computation ModeMemoryArchitectureData PartitionAvailabilityData PassesSerial orMultithreadedcontiguousN/A (all)manyDistributedpartitionedallmanyOut-of-Corepartitionedone-at-a-timeone or fewStreaming/in situpartitionedone-at-a-timeone
Mathematicsneededpartition couplingmathupdating via partitioncoupling mathone-pass updating viapartition coupling math
Minimizing data access (energy) pushes everyone towardone-pass (one-touch) updating.
Page 16Prediction of Ice and Climate Evolution atExtreme Scales (PISCEES)
â€¢ SciDAC Project that is:
â€¢ Developing robust, accurate, and scalabledynamical cores for ice sheet modeling on a varietyof mesh typesâ€¢ Evaluate ice sheet models using new tools for V&Vand UQâ€¢ Integrate these models and tools into the CommunityIce Sheet Model (CISM) and Community EarthSystem Model (CESM)â€¢ Simulate decade-to-century-scale evolution of theGreenland and Antarctic ice sheets
PI: William Lipscomb, Philip Jones (Acting)
LANL
Page 17Data set structure
â€¢ Structured NetCDF files
â€¢ Ice defined by two variables: topg, thkâ€¢ Ice flow sheets defined by N levels
land heightice thicknessIce sheet mesh
Page 18Flow Analysis in PISCEES
Page 19We have a scalable integral curve algorithmParallelize
over blocksParallelizeover seeds
â€¢ Use a combination of seed and block parallelization
â€¢ Dynamically steer computationâ€¢ Allocate resources where neededâ€¢ Load blocks from disk on demand
â€¢ Parallelize over seeds and blocksâ€¢ Goals:
1.Maximize processor utilization2.Minimizes IO3.Minimizes communication
â€¢ Works adequately in all use cases
D. Pugmire, H. Childs, C. Garth, S. Ahern, G. Weber, â€œScalable Computatio  http://www.nuokui.com/pdf/Kq4ar3twverI.html  n of Streamlines onVery Large Datasets,â€� Proceedings of Supercomputing 2009, Portland, OR, November, 2009 
Page 20Parallel Integral Curve System (PICS)
Data flow network
Pipeline
FilterFilterFilter
Render
PICS Filter
Page 21PICS Filter
PICS Filter Design
InstantiateparticlesAdvanceparticlesEvaluatevelocityAnalyzestepCreateoutputParallelization
Page 22â€œDistance Traveledâ€� operator
12.83
Page 23Results
Steady state flow distance traveled1 year of travel10 years of travel
Page 24Big Data Exploration Requires Flexibility inAnalytics
â€¢ Analytics for not-so-big data:
â€¢ Science produces great manyalgorithmsâ€¢ Often redundant and relatedâ€¢ Statistics and mathematics prune,generalize, and connectâ€¢ Still we have hundreds of statisticsand mathematics books on dataanalytics
No reason to expect big data less needy than not-so-big dataFlexibility and a big toolbox are critical for explorationNeed for analytics diversity persists for big data
Page 25Programming with Big Data in R: pbdR
â€¢ R has unmatched diversity and flexibility for dataâ€¢ Goals:
â€¢ Shorten time from big data to science insightâ€¢ Productivity, Portability, Performance
â€¢ Approach:
â€¢ Implicit management of distributed data detailsâ€¢ Scalable, big data analytics with high-level syntaxâ€¢ Identical syntax to serial Râ€¢ Powered by state of the art scalable librariesâ€¢ Free* R packages
*MPL, GPL and BSD licensedpbdR  Core  TeamGeorgeOstrouchov1,2, Team LeadWei-Chen Chen1PragneshPatel2Drew Schmidt2
1Oak Ridge National Laboratory2University of Tennessee
Page 26High-Level Syntax
Cov.X <- cov(X)Cov.X <- cov(X)N <- nrow(X)mu <- colSums(X) / NX <-sweep(X, STATS=mu, MARGIN=2)Cov.X <-crossprod(X.spmd) / (N-1)N <- allreduce(nrow(X))mu <-
allreduce(colSums(X) / N)X <- sweep  http://www.nuokui.com/pdf/Kq4ar3twverI.html  (X,
STATS=mu, MARGIN=2)Cov.X <-
allreduce(crossprod(X)) / (N-1)
CovarianceDeveloperLinear Models
Lm.X <- lm.fit(X, Y)Lm.X <- lm.fit(X, Y)tX <- t(X)A <- tX %*% XB <- tX %*%Yols <- solve(A) %*% BtX <- t(X)A <- allreduce(tX %*% X)B <-
allreduce(tX %*% Y)ols <- solve(A) %*% B
Developer 
Page 27A High-Level Language for Big Data Analytics
DistributedMatrixClass
Built onstandardparallellibraries
Managedblockdistribution
Paralleldataaccess
Page 28Promising Scalability
NautilusKraken
Page 29Promising Scalability
Nautilus
Gaussian data generation
Page 30Performance is highly dependent upon I/O rates
2T cells, 32K procs
â€¢ Weak scaling study 2009 (isocontouring,volume rendering): ~63 million cells/core
â€¢Appx I/O time: 2-5 minutesâ€¢Appx processing time: 10 seconds
MachineTypeProblem Size # coresJaguarCray XT52T32kFranklinCray XT41T, 2T16k, 32kDawnBG/P4T64kJunoLinux1T16k, 32kRangerSun Linux1T16kPurpleAIX0.5T8k
Page 31Hardware technology curves at the exascale: ~2018
â€¢ Billion-way concurrencyâ€¢ Constrained memory environmentâ€¢ Very constrained I/O(in relation to compute capability)NSF CIF21: â€œComputingpower, data volumes, software,and network capacities are allon exponential growth paths.â€�
Page 32Node Memory400 PB/sNode Memory400 PB/sInterconnect (10% Staging Nodes)10 PB/sInterconnect (10% Staging Nodes)10 PB/sStorage60 TB/sStorage60 TB/sComputation8 EB/sComputation8 EB/sOff-LineVisualizationCo-ScheduledVisualizationEmbeddedVisualization
Visualization thanks to Ken Moreland
Page 33Implications for analysis & visualization
â€¢ Extremely limited ability to move data off HPC resourceâ€¢ The de-coupling of simulation codes and visualization codes can no longercontinueâ€¢ Extremely limited mem  http://www.nuokui.com/pdf/Kq4ar3twverI.html  ory spaceâ€¢ Extreme concurrency will break most communication modelsâ€¢ Pure MPI already breaking at the petascaleâ€¢ Fine degree of data parallelism will break most data processing models
Page 34Implications for visualization & analysis
â€¢ Massive concurrency across nodes
â€¢ New parallel methodologies avoid scaling limits
â€¢ e.g., hybrid and multi-level parallelism
â€¢ In situ analysis codes must be commensurate with simulation codesâ€™ parallelism
â€¢ Massive concurrency within nodes
â€¢ Thread- and data-level parallelismâ€¢ Accelerators/GPUs today also have discrete memoryâ€¢ Current vis GPU use generally limited to rendering
Predicted Exascale Machines
Node Concurrency1,000 - 10,000Number of Nodes1,000,000 - 100,000
Total Concurrency1 billion
Page 35So what do we do?
â€¢ Weâ€™ve had a lot of success moving processing closer and closer to thedata.â€¢ Medium-term goal: Take the final step in moving processing closer to thedata
â€¢ Right to the source, in memory where itâ€™s generatedâ€¢ Reduce data every step of the way to the userâ€¢ All data visualization (and analysis) becomes remote
â€¢ Long-term goal: Move data processing everywhere the data lives
Page 36Injection of analysis into I/O pipelines
â€¢ Leverages existing code methods for data movement
â€¢ Lots of compute availableâ€¢ Exploits high-capacity HPC interconnect
â€¢ Possible to annotate, reduce, and reorder data in flightâ€¢ I/O is the primary bottleneck, so itâ€™s the logical place to begin adaptation
â€¢ Challenges:
â€¢ Memory-constrainedâ€¢ Impossible to do serendipitous discovery with in situ aloneâ€¢ Temporal analysis can be difficult
Page 37Goal: Tightly-coupled analysis infrastructures
SimulationCoupledanalysisPostprocessing
Infrastructure by Jackie Chen of the Sandia Combustion Center, 2011
Page 38ADIOS: ADaptable I/O System
  http://www.nuokui.com/pdf/Kq4ar3twverI.html  â€¢ An I/O abstraction frameworkâ€¢ Provides portable, fast, scalable, easy-to-use,metadata rich output with a simple APIâ€¢ Layered software architectureâ€¢ Change I/O method on-the-flyâ€¢ Abstracts the API from the method used for I/Oâ€¢ Provides method for injection of analysis andvisualization
Page 39ADIOS: I/O problems and their solutions
â€¢ I/O buffering and aggregation:
â€¢ Buffering utilizes max I/O bandwidth at writingâ€¢ Aggregation utilizes max I/O bandwidth at reading
â€¢ Data layout optimization:
â€¢ Layout optimization improves read performance
â€¢ Reduce synchronization and contention:
â€¢ Log-file format and aggregation decreases lockcontention and decrease network movementâ€¢ Scheduled staging decreases impact ofasynchronous I/O
5% peak0.8% peak 
Page 40Success across many application domains
â€¢ Fusion:
â€¢ Using staging towards predictive capabilitiesâ€¢ Coupled with ParaView, VisIt, and dashboards
â€¢ Combustion:
â€¢ Orders of magnitude speed improvement forcheckpoint/restartâ€¢ In situ feature detection
â€¢ More (astro, AMR,geophysics, â€¦)
Page 41At the same time: Exploit fine-grained parallelism
â€¢ Memory space per core may be down in the megabytes to 100s ofkilobyte range
â€¢ (Though HMCâ€™s may alleviate the memory wall and capacity.)
â€¢ Data parallelism becomes much more complex at this fine level of detail:
â€¢ How to create and exploit search data structuresâ€¢ How to harness communication hierarchiesâ€¢ How to handle â€œghostâ€� region between data blocksâ€¢ Iterative algorithms (e.g., streamlines) become extremely inefficient
â€¢ No analysis or visualization algorithms are written this way.Everything must be rewritten.
Page 42Extreme-scale Analysis and Visualization Library:EAVL
â€¢ Update traditional data model to handle modern simulation codes and awider range of data. Extend current analysis   http://www.nuokui.com/pdf/Kq4ar3twverI.html  and vis tools to data thatcannot be approached today.â€¢ Investigate how an updated data and execution model can achieve thenecessary computational, I/O, and memory efficiency.â€¢ Explore methods for visualization algorithm developers to achieve theseefficiency gains and better support exascale architectures. Allow easygradual adoption into existing analysis/vis tools.
Page 43Three primary activities
â€¢ Provide a richer data model forscientific data expressionâ€¢ Provide new execution models forconstrained memory, advancedarchitectures
â€¢ Distributed parallelism, task parallelism,thread parallelism
â€¢ Provide programming method toexploit the above: functor   iterator,library of methods
methanetemperature
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Page 44Promising results to date
â€¢ Data thresholding is more memory- andcomputation-efficient.â€¢ Coordinate space transformation movesfrom O(n) to O(1).â€¢ Structured grids are an order of magnitudemore space efficient.â€¢ Efficient execution on heterogenousarchitecturesâ€¢ Temporal parallelism provides scalabilitybenefitsâ€¢ In-place processing provides significantmemory benefits
Page 45HPC data is becoming more complex
â€¢ Workflow tools are becoming more common:
â€¢ Pegasus, Swift, HTCondor, Kepler, Eden, â€¦
â€¢ Ensembles are growing largerâ€¢ Parameter studies and Design of Experiments are becoming much morecommonâ€¢ Tracking provenance is importantâ€¢ There are no general tools for processing large runs of simulations
The concept of a â€œdata setâ€� is evolvingâ€¦becoming more unstructured.
Page 4646
Turbo Compressor Innovation
Breakthrough aerodynamic design optimization
OLCF ContributionResultsScience Objectives and Impact
â€¢ Ramgen Power Systems is developing shock wave
compression turbo machinery to meet DOE goals forreducing Carbon Captur  http://www.nuokui.com/pdf/Kq4ar3twverI.html  e and Sequestration (CCS)costs
â€¢ Complementary goal: design a gas turbine with
dramatically lower costs and higher efficiency
â€¢ Compressing CO2 to the required 100 atmospheres
represents approximately 33 percent of the total cost ofSequestration
â€¢ Transformed Ramgenâ€™s aerodynamic design processâ€¢ Observed designs with valuable new characteristics, from
ensembles not possible without Jaguar
â€¢ Created a new workflow paradigm that accelerates design of
compressors
â€¢ Accelerated computational design cycle for turbo machinery from
months to 8 hours!
Leadership-scale ensemble runs on Jaguar supportintelligently-driven design optimization
â€¢ 50x improvement in code scalability with
more efficient memory utilization
â€¢ Accelerated I/O by 10x with optimizations
and ADIOS
â€¢ Intelligent use of ensembles to explore
parameter space using 240,000 cores
"The use of Jaguar has cut the projected time from concept to a commercialproduct by at least two years and the cost by over $4 million,â€�-- Ramgenâ€™s CEO and Director Doug Jewett.
INCITE ProjectAllan Grosvenor, Ramgen Power SystemsAllocated hours: 40MUsed hours: 36M
Page 4747
Science Objectives and Impact
â€¢ Predict how many protons and neutrons can be
bound within a nucleus.
â€¢ Identify the nuclear drip lines that denote the
limits of nuclear binding.
â€¢ Project advances toward the vision of â€œdesignernuclei,â€� with uses ranging from potential cancertreatments to a better understanding ofsuperconductivity.
Nuclear Physics
The Limits of theNuclear Landscape
Map of bound evenâ€“even nuclei as a function of Z and N. Shown are stable nuclei(black), radioactive nuclei (green), mean drip lines with uncertainties (red), and two-neutron separation line (blue). The inset shows the irregular behavior of the two-neutrondrip line around Z = 1  http://www.nuokui.com/pdf/Kq4ar3twverI.html  00.
â€¢Custom code (co-authored by OLCF staffmember Hai Ah Nam) used density functionaltheory to solve the nuclear structure, whichinvolved a large algebraic non-linear eigenvalueproblem. â€¢Each ensemble of nuclei took about two hours tocalculate on 224,256-processors in Jaguarsystem.â€¢Each run evaluated about 250,000 possiblenuclear configurations.
OLCF ContributionScience Results
â€¢ Accurate calculation of the number of bound nuclei in nature.â€¢ Calculations predicted about 7,000 possible combinations ofprotons and neutrons allowed in bound nuclei with up to 120protons.â€¢ Several leading models of nuclear interaction shown to be largely inagreement.
J. Erier, et al., â€œThe Limits of the Nuclear Landscapeâ€�Nature, June 2012.
INCITE ProjectJames Vary, Iowa State UniversityAllocated hours: 37MUsed hours: 60M
Page 4848
Science Objectives and Impact
â€¢Determine how much sea level will rise
based on three climate-change mitigationscenarios
â€¢Examine mechanisms involved in sea-
level rise, including ice melt and thermalexpansion of water
â€¢Quantify sea-level rise in response to
mitigation strategies
â€¢Used CCSM4 to conduct simulation
ensembles for each mitigation scenario
â€¢Simulation of 15 separate solutions,
4,500 total simulation years
OLCF ContributionScience Results
â€¢ Sea level will continue to rise in the future, even with aggressive CO2
mitigation scenarios.
â€¢ Aggressive mitigation measures strongly affect the rate of increaseâ€¢ Mitigation buys important time to implement adaptation measures for
inevitable sea-level rise
CoolingStableWarming
Sea-Level Rise Inevitable
Aggressive Greenhouse GasMitigation Can Help Slow Rate
Sea level will continue to rise due to thermal expansion into 2300 under the mostaggressive mitigation scenario, (cooling), but the rise will be slowed e  http://www.nuokui.com/pdf/Kq4ar3twverI.html  nough toimplement adaptation measures. With less aggressive mitigation (stable) and(warming), there would be less time for adaptation.G.A. Meehl, et al., â€œRelative outcomes of climate changemitigationâ€¦,â€� Nature Climate Change, August 2012.
INCITE ProjectWarren Washington, NCARAllocated hours: 56MUsed hours: 49M
Page 4949
Science Objectives and Impact
â€¢ Test millions of compounds against a specific
protein receptor using simulations.
â€¢ Find the best match between a compound and its
targeted protein receptor, in hopesof creating drugs with a higher degree ofspecificity and less cross-reactivity, as well asexploring alternative uses for existing drugs.
â€¢ Impact: Drastically decrease the time and money
spent bringing new, improved drugs to market.
Computational and Molecular Biophysics
High-Performance Computing for Accelerated Drug Discovery
Directorâ€™s Discretion ProjectUsage between 1/1/2012â€“9/30/2012Used 7.6 M hours of allocation, or 110%Used variations of AutoDock, a GeneralPublic License, open-source software,commonly used for molecular 3D modelingin protein-docking simulations.
OLCF Contribution
Science Results
â€¢ Successfully screened 2 million compounds against a targetedreceptor in a matter of days, as opposed to months usingcomputing clusters or longer with test-tube methods.â€¢ Allowed scientists to account for specific binding in proteinreceptors as well as structural variations within the receptor.â€¢ Enabled search of a vast library of molecular compounds to findalternative uses for existing drugs (i.e. â€œrepurposingâ€�).
Computational approaches are used to describe how molecular compoundsof a drug candidate (displayed in colored spheres) bind to its specific proteinreceptor target. Image courtesy of Jerome Baudry, UTK & ORNLS. Ellingson. â€œAccelerating virtual high-throughput ligand docking,â€�Presented at H  http://www.nuokui.com/pdf/Kq4ar3twverI.html  PDC12, 2012 .
Discretionary ProjectJerome Baudry, UTK/ORNLAllocated hours: 7MUsed hours: 8M
Page 50Southern California Earthquake Center (SCEC)
San Onofre
1. Hazard map3. Hazarddisaggregation4. Rupture model5. Seismograms2. Hazard curves
CyberShake workflow
A single largeHPC simulationleads to millions ofserial analysisjobs
Page 51What does the future hold for big data from HPC?
â€¢ Evolving nature of data sets means new research and development directions. We have nogeneral tools to handle these!â€¢ Workflow tools, ensemble processing, and parameter studies ->
â€¢ Need to store â€œmetaâ€� information about simulation results.â€¢ Promising: Database storage and query methods. SciDB?
â€¢ Scalability limitations of traditional files ->
â€¢ Need to store scientific information with new methods.â€¢ Promising: Object stores and access methods
â€¢ Fusion of HPC data and observational data ->
â€¢ Need for algorithms and methods to expand into new data types.
â€¢ New data types and descriptions ->
â€¢ Requirement for processing beyond simply distributed-parallel methodsâ€¢ Promising: â€œbusiness analyticsâ€� methods for unstructured data
Page 52Weâ€™ve got a lot of work to do!Thanks for your time!
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