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In this lecture, we see more examples of mathematical induction (section4.1 of Rosen).
1 Recap
A simple proof by induction has the following outline:Proof: We will show P(n) is true for all n, using induction on n.Base: We need to show that P(1) is true.Induction: Suppose that P(k) is true, for some integer k. Weneed to show that P(k   1) is true.In constructing an induction proof, youâ€™ve got two tasks. First, you needto set up this outline for your problem. This includes identifying a suitableproposition P and a suitable integer variable n.Your second task is to fill in the middle part of the induction step. Thatis, you must figure out how to relate a solution for a larger problem P(k   1)to a solution for a small problem P(k). Most students want to do thisby starting with the small problem and adding something to it. For morecomplex situations, itâ€™s usually better to start with the larger problem andtry to find an instance of the smaller problem inside it.1
Page 22 Finishing up our example
Last Friday, we were trying to prove the following claim:Claim 1 For any positive integer n, Î£n
i=1i =n(n 1)2
.Letâ€™s finish up the details of this example.Proof: We will show that Î£n
i=1i =n(n 1)2
for any integer n, usinginduction on n.Base: We need to show that the formula holds for n = 1. Î£1
i=1i =
1. And also 1.2
2
= 1. So the two are equal for n = 1.Induction: Suppose that Î£k
i=1i =k(k 1)2
for some positive inte-ger k. We need to show that Î£k 1
i=1i =(k 1)(k 2)2
.By the definition of summation notation, Î£k 1
i=1i = (Î£ki=1 i) (k 
1)Substituting in the formula from our inductive hypothesis, we getthat (Î£k
i=1 i) (k  1)=(k(k 1)2
) (k   1).But (k(k 1)
2
) (k   1) = k(k 1)
2
 
2(k 1)2
=
(k 2)(k 1)2
=
(k 1)(k 2)2 http://www.nuokui.com/pdf/H-zDc1nEpPHI.html  ar.So, combining these equations, we get that Î£k 1
i=1i =(k 1)(k 2)2
which is what we needed to show.
3 Another example
Letâ€™s use induction to prove the following claim:Claim 2 For every positive integer n â‰¥ 4, 2n < n!.Remember that n! (â€œn factorialâ€�) is 1ï¿½2ï¿½3ï¿½4 ...n. E.g. 5! = 1ï¿½2ï¿½3ï¿½4ï¿½5 =120.2
Page 3First, as usual, try some specific integers and verify that the claim is true.Since the claim specifies n â‰¥ 4, itâ€™s worth checking that 4 does work but thesmaller integers donâ€™t.In this claim, the proposition P(n) is 2n < n!. So an outline of ourinductive proof looks like:Proof: Suppose that n is an integer and n â‰¥ 4. Weâ€™ll prove that2n < n! using induction on n.Base: n = 4. [show that the formula works for n = 4]Induction: Suppose that the claim holds for n = k. That is,suppose that we have an integer k â‰¥ 4 such that 2k < k!. Weneed to show that 2k 1 < (k   1)!.Notice that our base case is for n = 4 because the claim was specified tohold only for integers â‰¥ 4.Fleshing out the details of the algebra, we get the following full proof.When working with inequalities, itâ€™s especially important to write down yourassumptions and what you want to conclude with. You can then work fromboth ends to fill in the gap in the middle of the proof.Proof: Suppose that n is an integer and n â‰¥ 4. Weâ€™ll prove that2n < n! using induction on n.Base: n = 4. In this case 2n = 24 = 16. Also n!=1ï¿½2ï¿½3ï¿½4 = 24.Since 16 < 24, the formula holds for n = 4.Induction: Suppose that the claim holds for n = k. That is,suppose that we have an integer k â‰¥ 4 such that 2k < k!. Weneed to show that 2k 1 < (k   1)!.2k 1 = 2ï¿½2k. By the inductive hypothesis, 2k < k!, so 2ï¿½2k < 2ï¿½k!.Since k â‰¥ 4, 2 < k   1. So 2 ï¿½ k! < (k   1) ï¿½ k!=(k   1)!.Putting these equations together, we find that 2k 1 < (k   1)!,which is what we needed to show.3
Page 44 Some comments about style
Notice that the st  http://www.nuokui.com/pdf/H-zDc1nEpPHI.html  art of the proof tells you which variable in your formula(n in this case) is the induction variable. In this formula, the choice ofinduction variable is fairly obvious. But sometimes thereâ€™s more than oneinteger floating around that might make a plausible choice for the inductionvariable. Itâ€™s good style to always mention that you are doing a proof byinduction and say what your induction variable is.Itâ€™s also good style to label your base and inductive steps.Notice that the proof of the base case is very short. In fact, Iâ€™ve writtenabout about twice as long as youâ€™d normally see it. Almost all the time, thebase case is trivial to prove and fairly obvious to both you and your reader.Often this step contains only some worked algebra and a check mark at theend. The only important thing is that you do actually check the base case:omitting it entirely is a serious flaw.The important part of the inductive step is ensuring that you assumeP(k) and use it to show P(k   1). At the start, you must spell out yourinductive hypothesis, i.e. what P(k) is for your claim. Make sure that youuse this information in your argument that P(k   1) holds. If you donâ€™t, itâ€™snot an inductive proof and itâ€™s very likely that your proof is buggy.At the start of the inductive step, itâ€™s also a good idea to say what youneed to show, i.e. quote what P(k   1) is.These â€œstyleâ€� issues are optional in theory, but actually critical for be-ginners writing inductive proofs. You will lose points if your proof isnâ€™t clearand easy to read. Following these style points (e.g. labelling your base andinductive steps) is a good way to ensure that it is, and that the logic of yourproof is correct.
5 Another example
The previous examples applied induction to an algebraic formula. We canalso apply induction to other sorts of statements, as long as they involve asuitable integer n.4
Page 5Claim 3 For any positive integer n  http://www.nuokui.com/pdf/H-zDc1nEpPHI.html  , n3 âˆ’ n is divisible by 3.In this case, P(n) is â€œn3 âˆ’ n is divisible by 3.â€�Proof: By induction on n.Base: Let n = 1. Then n3 âˆ’ n = 13 âˆ’ 1 = 0 which is divisible by3.Induction: Suppose that k3 âˆ’k is divisible by 3, for some positiveinteger k. We need to show that (k   1)3 âˆ’ (k   1) is divisible by3.(k 1)3âˆ’(k 1) = (k3 3k2 3k 1)âˆ’(k 1) = (k3âˆ’k) 3(k2  k)From the inductive hypothesis, (k3 âˆ’ k) is divisible by 3. And3(k2   k) is divisible by 3 since (k2   k) is an integer. So theirsum is divisible by 3. That is (k   1)3 âˆ’ (k   1) is divisible by 3.D
6 Induction on the size of sets
Now, letâ€™s consider a fact about sets which weâ€™ve used already but neverproperly proved:Claim 4 For any finite set S containing n elements, S has 2n subsets.The objects involved in this claim are sets. To apply induction to factsthat arenâ€™t about the integers, we need to find a way to use the integers toorganize our objects. In this case, weâ€™ll organize our sets by their cardinality.The proposition P(n) for our induction is then â€œFor any set S containingn elements, S has 2n subsets.â€� Notice that each P(k) is a claim about awhole family of sets, e.g. P(1) is a claim about 37, fred, âˆ’31.7, andso forth.Proof: Weâ€™ll prove this for all sets S, by induction on the cardi-nality of the set.5
Page 6Base: Suppose that S is a set that contain no elements. Then Sis the empty set, which has one subset, i.e. itself. Putting zerointo our formula, we get 20 = 1 which is correct.Induction: Suppose that our claim is true for all sets of k ele-ments, where k is some non-negative integer. We need to showthat it is true for all sets of k   1 elements.Suppose that S is a set containing k   1 elements. Since k isnon-negative, k   1 â‰¥ 1, so S must contain at least one element.Letâ€™s pick a random element a in S. Let T = S âˆ’ a.If B is a subset of S, either B contains a or B doesnâ€™t contain a.The subsets of S not  http://www.nuokui.com/pdf/H-zDc1nEpPHI.html   containing a are exactly the subsets of T.The subsets of S containing a are exactly the subsets of T, witha added to each one. So S has twice as many subsets as T.By the induction hypothesis, T has 2k subsets. So S has 2 ï¿½ 2k =2k 1 subsets, which is what we needed to show.Notice that, in the inductive step, we need to show that our claim is truefor all sets of k   1 elements. Because we are proving a universal statement,we need to pick a representative element of the right type. This is the set Sthat we choose in the second paragraph of the inductive step.
7 A claim with more than one variable
Hereâ€™s another useful example that I didnâ€™t get to in lecture (and donâ€™t planto do later in the week). Consider this claim:Claim 5 For any non-negative integer m and any non-negative real numberx, (1   x)m â‰¥ 1   mx.This claim contains two variables, so itâ€™s important to be clear aboutwhich is the induction variable. In this case, only m will work because itâ€™sthe only integer. You canâ€™t do induction on real numbers.So P(m) is â€œfor any non-negative real number x, (1   x)m â‰¥ 1   mx.â€�6
Page 7Proof: by induction on m.Base: m = 0. Then (1   x)m = (1   x)0 =1=1 0x =1  mx.Induction: Suppose that there is a non-negative integer k, suchthat (1   x)k â‰¥ 1   kx for any non-negative real number x. Weneed to show that (1   x)k 1 â‰¥ 1 (k   1)x, for any for anynon-negative real number x.(1   x)k 1 = (1   x)k ï¿½ (1   x). By the induction hypothesis,(1   x)k â‰¥ 1   kx. So we have:(1 x)kï¿½(1 x) â‰¥ (1 kx)ï¿½(1 x) = 1 kx x kx2 = 1 (1 k)x kx2Since x2 â‰¥ 0 and k was specified to be non-negative, 1   (1  k)x   kx2 â‰¥ 1 (1  k)x. So (1   x)k 1 â‰¥ 1 (k   1)x, which iswhat we needed to show.7
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