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Page 1The Mathematics of Deep Learning
ICCV Tutorial, Santiago de Chile, December 12, 2015â€¨â€¨
Joan Bruna (Berkeley), Raja Giryes (Duke), Guillermo Sapiro (Duke), Rene Vidal (Johns Hopkins)
Page 2Motivations and Goals of the Tutorial
â€¢ Motivation: Deep networks have led to dramaticimprovements in performance for many tasks, but themathematical reasons for this success remain unclear. â€¢ Goal: Review very recent work that aims at understandingthe mathematical reasons for the success of deep networks.â€¢ What we will do: Study theoretical questions such as
â€“ What properties of images are being captured/exploited by DNNs?â€“ Can we ensure that the learned representations are globally optimal?â€“ Can we ensure that the learned representations are stable?
â€¢ What we will not do: Show X% improvement in performancefor a particular application. 
Page 3Tutorial Schedule
â€¢ 14:00-14.30: Introductionâ€¢ 14:30-15.15: Global Optimality in Deep Learning (Renï¿½ Vidal)â€¢ 15:15-16.00: Coffee Break â€¢ 16:00-16:45: Scattering Convolutional Networks (Joan Bruna)â€¢ 16:45-17:30: Stability of Deep Networks (Raja Giryes)â€¢ 17.30-18:00: Questions and Discussion
Page 4What do we mean by â€˜Deep Learningâ€™ in this tutorial?
Disclaimer
Page 5What do we mean by â€˜Deep Learningâ€™ in this tutorial?â€¢A class of signal representations that are hierarchical:â€¢The optimization procedure by which these representationsare learnt from data end-to-end.
Disclaimer
figure from Raja Giryes
Page 6Early Hierarchical Feature Models for Vision
â€¢ Hubel & Wiesel [60s] Simple & Complex cells architecture:â€¢ Fukushimaâ€™s Neocognitron [70s]
figures from Yann LeCunâ€™s CVPRâ€™15 plenary
Page 7Early Hierarchical Feature Models for Vision
â€¢ Yann LeCunâ€™s Early ConvNets [80s]:â€“ Used for character recognitionâ€“ Trained with back propagation.
figures from Yann LeCunâ€™s CVPRâ€™15 plenary
Pag  http://www.nuokui.com/pdf/8oirpcFZaKjI.html  e 8Deep Learning pre-2012
â€¢Despite its very competitive performance, deep learningarchitectures were not widespread before 2012.
â€“ State-of-the-art in handwritten pattern recognition [LeCun et al. â€™89,Ciresan et al, â€™07, etc]
figures from Yann LeCunâ€™s CVPRâ€™15 plenary
Page 9Deep Learning pre-2012
â€¢Despite its very competitive performance, deep learningarchitectures were not widespread before 2012.
â€“ Face detection [Vaillant et alâ€™93,â€™94 ; Osadchy et al, â€™03, â€™04, â€™07]
(Yannâ€™s Family)
Page 10Deep Learning pre-2012
â€¢Despite its very competitive performance, deep learningarchitectures were not widespread before 2012.
â€“ Scene Parsing [Farabet et al, â€™12,â€™13]
figures from Yann LeCunâ€™s CVPRâ€™15 plenary
Page 11Deep Learning pre-2012
â€¢Despite its very competitive performance, deep learningarchitectures were not widespread before 2012.
â€“ Scene Parsing [Farabet et al, â€™12,â€™13]
figures from Yann LeCunâ€™s CVPRâ€™15 plenary
Page 12Deep Learning pre-2012
â€¢Despite its very competitive performance, deep learningarchitectures were not widespread before 2012.
â€“ Too many parameters to learn from few labeled examples.â€“ â€œI know my features are better for this taskâ€�.â€“ Non-convex optimization? No, thanks.â€“ Black-box model, no interpretability. 
Page 13Deep Learning Golden age in Vision
â€¢ 2012-2014 Imagenet results:â€¢ 2015 results: MSRA under 3.5% error. (using a CNN with 150 layers!)
CNN
non-CNN
figures from Yann LeCunâ€™s CVPRâ€™15 plenary
Page 14Puzzling Questions
â€¢What made this result possible?
â€“ Larger training sets (1.2 million, high-resolution training samples, 1000object categories)â€“ Better Hardware (GPU)â€“ Better Learning Regularization (Dropout)
â€¢Is this just for a particular dataset?â€¢Is this just for a particular task?â€¢Why are these architectures   http://www.nuokui.com/pdf/8oirpcFZaKjI.html  so efficient? 
Page 15Is it just for a particular dataset?
â€¢ No. Nowadays CNNs hold the state-of-the-art on virtually any objectclassification task.
figures from Yann LeCunâ€™s NIPSâ€™15 tutorial
Page 16Is it just for a particular task?
â€¢ No. CNN architectures also obtain state-of-the-art performance on manyother tasks:Pose estimation [Thomson et al, CVPRâ€™15]Object Localization[R-CNN, HyperColumns, Overfeat, etc.]
figures from Yann LeCunâ€™s CVPRâ€™15 plenary
Page 17Is it just for a particular task?
â€¢ No. CNN architectures also obtain state-of-the-art performance on othertasks:â€¢Semantic Segmentation [Pinhero, Collobert, Dollar, ICCVâ€™15]
figures from Yann LeCunâ€™s CVPRâ€™15 plenary
Page 18Is it just for a particular task?
â€¢ No. CNN architectures also obtain state-of-the-art performance on othertasks:â€¢Generative Models for Natural Images [Radford, Metz & Chintala,â€™15]
Page 19Is it just for a particular task?
â€¢ No. CNN architectures also obtain state-of-the-art performance on othertasks:â€¢Generative Models for Natural Images [Radford, Metz & Chintala,â€™15]
Page 20Is it just for a particular task?
â€¢ No. CNN architectures also obtain state-of-the-art performance on othertasks:â€¢Related work [Kulkarni et alâ€™15, Dosovitsky et al â€˜14]
Page 21Is it just for a particular task?
â€¢ No. CNN architectures also obtain state-of-the-art performance on othertasks:â€¢Image Captioning [Vinyals et alâ€™14, Karpathy et al â€™14, etc]â€¢Optical Flow estimation [Zontar â€™15]â€¢Image Super-Resolution [MSRâ€™14]
Page 22â€¢Convolutional Deep Learning models thus appear tocapture high level image properties more efficiently thanprevious models.
â€¢ Highly Expressive Representations capturing complex geometrical andstatistical patterns.â€¢ Excellent generalization: â€œbeatingâ€� the curse of dimensionality
Page   http://www.nuokui.com/pdf/8oirpcFZaKjI.html  23â€¢Convolutional Deep Learning models thus appear tocapture high level image properties more efficiently thanprevious models.â€¢ Which architectural choices might explain this advantagemathematically?
â€¢ Role of non-linearities?â€¢ Role of convolutions?â€¢ Role of depth?â€¢ Interplay with geometrical, class-specific invariants?
Page 24â€¢Convolutional Deep Learning models thus appear tocapture high level image properties more efficiently thanprevious models.â€¢ Which architectural choices might explain this advantagemathematically?â€¢Which optimization choices might explain this advantage?
â€¢ Presence of local minima or saddle points?â€¢ Equivalence of local solutions?â€¢ Role of Stochastic optimization?
Page 25â€¢ Deep Networks define a class of â€œuniversal approximatorsâ€�: Cybenko andHornik characterization:
Deep Learning Approximation Theory
Theorem [Câ€™89, Hâ€™91] Let Ï�() be a bounded, non-constant continuous func-tion. Let Im denote the m-dimensional hypercube, and C(Im) denote the spaceof continuous functions on Im. Given any f âˆˆ C(Im) and âˆˆ > 0, there existsN > 0 and vi,wi,bi, i = 1...,N such thatF(x) = âˆ‘
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x2Im |f(x) - F(x)| < âˆˆ .
Page 26â€¢ Deep Networks define a class of â€œuniversal approximatorsâ€�: Cybenko andHornik characterization:
â€¢ It guarantees that even a single hidden-layer network can represent anyclassification problem in which the boundary is locally linear (smooth).
â€¢ It does not inform us about good/bad architectures.â€¢ Or how they relate to the optimization.
Deep Learning Approximation Theory
Theorem [Câ€™89, Hâ€™91] Let Ï�() be a bounded, non-constant continuous func-tion. Let Im denote the m-dimensional hypercube, and C(Im) denote the spaceof continuous functions on Im. Given any f âˆˆ C(Im) and âˆˆ > 0, there existsN > 0 and vi,wi,bi, i = 1...,N such thatF(x) = âˆ‘
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Page 27Deep Learning Estimation Theory
Theorem [Barronâ€™92] The mean integrated square error between the esti-mated networkË†F and the target function f is bounded byO (C2
f
N  O (NmKlog K) ,where K is the number of training points, N is the number of neurons, m is theinput dimension, and Cf measures the global smoothness of f.
Page 28â€¢ Combines approximation and estimation error.
â€¢ Does not explain why online/stochastic optimization works better than batchnormalization.â€¢ Does not relate generalization error with choice of architecture.
Deep Learning Estimation Theory
Theorem [Barronâ€™92] The mean integrated square error between the esti-mated networkË†F and the target function f is bounded byO (C2
f
N  O (NmKlog K) ,where K is the number of training points, N is the number of neurons, m is theinput dimension, and Cf measures the global smoothness of f.
Page 29Non-Convex Optimization
â€¢ [Choromaska et al, AISTATSâ€™15] (also [Dauphin et al, ICMLâ€™15] ) use toolsfrom Statistical Physics to explain the behavior of stochastic gradient methodswhen training deep neural networks. 
Page 30Non-Convex Optimization
â€¢ [Choromaska et al, AISTATSâ€™15] (also [Dauphin et al, ICMLâ€™15] ) use toolsfrom Statistical Physics to explain the behavior of stochastic gradient methodswhen training deep neural networks.
â€¢ Offers a macroscopic explanation of why SGD â€œworksâ€�.â€¢ Gives a characterization of the network depth.
â€¢ Strong model simplifications, no convolutional specification.
Page 31Tutorial Outline
â€¢ Part I: Global Optimality in Deep Learning (Renï¿½ Vidal)â€¢ Part II: Signal Recovery from Scattering ConvolutionalNetworks (Joan Bruna)â€¢ Part III: On the Stability of Deep Networks (Raja Giryes)
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Theorem 1: There exists an algorithm    such that
Critical Points of Non-Convex FunctionGuarantees of Our Framework
(a)(i)(b)(c)(d)(e)(f)(g)(h)
Figure 4.1: Left: Example critical points of a non-convex function (shown in red).
original
single-layer recovery
O(log N)
scattering recovery
O((log N)2)
Page 32Part I: Global Optimality in Deep Learning
â€¢ Key Questions
â€“ How to deal with the non-convexity of the learning problem?â€“ Do learning methods get trapped in local minima?â€“ Why many local solutions seem to give about equally good results?â€“ Why using rectified linear rectified units instead of other nonlinearities?
â€¢ Key Results
â€“ Deep learning is a positively homogeneous factorization problemâ€“ With proper regularization, local minima are globalâ€“ If network large enough, global minima can be found by local descent
Critical Points of Non-Convex FunctionGuarantees of Our Framework
(a)(i)(b)(c)(d)(e)(f)(g)(h)
Figure 4.1: Left: Example critical points of a non-convex function (shown in red).
Page 33Part II: Scattering Convolutional Networks
â€¢ Key Questions
â€“ What is the importance of "deep" and "convolutional" in CNN
architectures?
â€“ What statistical properties of images are being captured/exploited by
deep networks?
â€¢ Key Results
â€“ Scattering coefficients are stable encodings of geometry and textureâ€“ Layers in a CNN encode complex, class-specific geometry.
original
single-layer recovery
O(logN)
scattering recovery
O((logN)2)
Page 34Part III: On the Stability of Deep Networks
â€¢ Key Questions
â€“ Stability: Do small perturbations to the input image cause small
perturbations to the output of the network?
â€“ Can I recover the input from the   http://www.nuokui.com/pdf/8oirpcFZaKjI.html  output? 
â€¢ Key Results
â€“ Gaussian mean width is a good measure of data complexity. â€“ DNN keep important information of the data.â€“ Deep learning can be viewed as metric learning problem.
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Page 35Tutorial Schedule
â€¢ 14:00-14.30: Introductionâ€¢ 14:30-15.15: Global Optimality in Deep Learning (Renï¿½ Vidal)â€¢ 15:15-16.00: Coffee Break â€¢ 16:00-16:45: Scattering Convolutional Networks (Joan Bruna)â€¢ 16:45-17:30: Stability of Deep Networks (Raja Giryes)â€¢ 17.30-18:00: Questions and Discussion
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