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Recovering matrices from incomplete and corrupted obser-vations is a fundamental problem with many applications invarious areas of science and engineering. In theory, undercertain conditions, this problem can be solved via a naturalconvex relaxation. However, all current provable algorithmssuffer from superlinear per-iteration cost, which severely lim-its their applicability to large scale problems. In this paper,we propose a robust principal component analysis (RPCA)plus matrix completion framework to recover low-rank andsparse matrices from missing and grossly corrupted obser-vations. Under the unified framework, we first present aconvex robust matrix completion model to replace the lin-ear projection operator constraint by a simple equality one.To further improve the efficiency of our convex model, wealso develop a scalable structured factorization model, whichcan yield an orthogonal dictionary and a robust data repre-sentation simultaneously. Then, we develop two alternatingdirection augmented Lagrangian (ADAL) algorithms to ef-ficiently solve the proposed problems. Finally, we discussthe convergence analysis of our algorithms. Experimentalresults verified both the efficiency and effectiveness of ourmethods compared with the state-of-the-art algorithms.
Categories and Subject Descriptors
H.2.8 [Database Management]: Database applications-Data Mining
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1. INTRODUCTION
In recent years, high dimensional data are becoming in-creasingly ubiquitous such as digital phot  http://www.nuokui.com/pdf/8XtbRJnkm7HI.html  ographs, surveil-lance videos and social network data. Such high dimen-sional data are becoming more commonly available due tothe advance in data collection technologies. However, the
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â€œcurse of dimensionalityâ€� has rendered many tasks such asinference, learning, and recognition, impractical. Principalcomponent analysis (PCA) is arguably the most widely usedtechnique for dimensionality reduction in statistical dataanalysis, mainly because it is simple to implement, can besolved efficiently, and is often effective in real-world applica-tions such as latent semantic indexing, face recognition andtext clustering. However, one of the main challenges facedby PCA is that the observed data is often contaminated byoutliers or missing values.This problem has drawn much attention from researchersin various communities such as data mining, machine learn-ing, signal/image processing, and computer vision [21, 30, 5,27, 34, 7, 16]. Based on compressive sensing and rank mini-mization, many methods for recovering low-rank and sparsematrices (also called robust principal component analysis orRPCA [30]) with incomplete or grossly corrupted observa-tions have been proposed, such as principal component pur-  http://www.nuokui.com/pdf/8XtbRJnkm7HI.html  suit (PCP) [5] and outlier pursuit [31]. In principle, thosemethods aim to minimize a hybrid optimization problem in-volving both the l1-norm and trace norm minimization. Itis recognized that the l1-norm and the trace norm as theconvex surrogates for the l0-norm and the rank function arepowerfully capable of inducing sparse and low-rank, respec-tively [24, 5]. In addition, Xu et al. [31] used the l1,2-normto model corrupted columns.Although RPCA has been well studied in recent years,there is little work focusing on RPCA plus matrix comple-tion (also called robust matrix completion or RMC [7]). Inthis paper, we are particularly interested in the trace normregularized problem for RMC:min
X
âˆ¥Xâˆ¥âˆ—   Î»f(X),(1)where âˆ¥Xâˆ¥âˆ— is the trace norm of the desired matrix X, i.e.,the sum of its singular values, Î» â‰¥ 0 is a regularizationparameter, and f(ï¿½) denotes the loss function such as thel2-norm loss or the l1-norm (or l1,2-norm) loss functions. Inthe following, we give a few examples of applications wherethe RMC is useful.â€¢ Robust principal component analysis (RPCA).When the loss function is the l1-norm loss, the model(1) is a RPCA problem, which is adopted by a greatnumber of emerging approaches such as PCP [5], andhas been successfully applied in many important prob-lems such as latent semantic indexing [21], video surveil-lance [30, 5], and low-rank textures.â€¢ Matrix completion (MC). When the loss functionis the l2-norm loss, and only a relatively small number
Page 2of entries are observed, the goal of this problem is tocomplete a low-rank matrix from incomplete samplesof its entries. This problem, also called matrix com-pletion, is fundamental for collaborative filtering [6],link prediction, and global positioning.In this paper, we aim to recover both low-rank and sparsematrices from missing and grossly corrupted observations.Our solution provides a good approximation to   http://www.nuokui.com/pdf/8XtbRJnkm7HI.html  the origi-nal data contaminated with both outliers and missing val-ues. Unlike existing RPCA methods, our approach not onlytakes into account the fact that the observations are contam-inated by additive outliers or missing values, but can alsoidentify both low-rank and sparse components from missingand grossly corrupted observations. We develop a provableand scalable solution framework for RPCA and RMC prob-lems, which is particularly useful in this â€œbig dataâ€� era wheremany real-world applications need to deal with large, highdimensional data with missing and corrupted values. Weconduct extensive experiments that verify both the efficiencyand effectiveness of our methods.We summarize the main contributions of our work as fol-lows:â€¢ We propose a unified RMC framework to recover bothlow-rank and sparse matrices from missing and grosslycorrupted observations, where the loss function can beselected as the l2-norm or the l1-norm.â€¢ We present both convex and non-convex scalable mod-els to replace the linear projection operator constraintby a simple equality one. With the orthogonality con-straint applied to the dictionary component, we con-vert the non-convex model into a smaller-scale matrixtrace norm regularized problem.â€¢ We develop two efficient alternating direction augmentedLagrangian (ADAL) algorithms to solve the proposedmethods, which can be accelerated by adaptively chang-ing the penalty parameter.â€¢ Finally, we also provide the convergence analysis of ourconvex and non-convex algorithms.This paper is organized as follows. We review backgroundand related work in Section 2. In Section 3, we present aconvex and a non-convex scalable trace norm regularizedmodels. We develop two efficient ADAL algorithms in Sec-tion 4. We provide the theoretical analysis of our algorithmsin Section 5. We report empirical results in Section 6, andconclude this paper in Section 7.
2. BACKGROUND AND   http://www.nuokui.com/pdf/8XtbRJnkm7HI.html  PROBLEM FORMU-LATION
Given a matrix, some of its entries may not be observeddue to problems in the acquisition process, e.g., loss of in-formation or high cost of experiments to obtain completedata [1]. For the matrix completion problem, many itera-tive thresholding algorithms [25, 19] have been proposed tosolve the trace norm regularized linear least squares problemmin
X
âˆ¥Xâˆ¥âˆ—  Î»2âˆ¥Pâ„¦(X) âˆ’ Pâ„¦(Z)âˆ¥2
F ,
(2)where Pâ„¦(Z) is defined as the projection of the matrix Zon the observed entries â„¦: Pâ„¦(Z)ij = Zij if (i, j) âˆˆ â„¦ andPâ„¦(Z)ij = 0 otherwise. In other words, f(ï¿½) is the l2-normloss function, i.e., f(X) = 1
2 âˆ¥Pâ„¦(X) âˆ’ Pâ„¦(Z)âˆ¥2F .
A low-rank matrix X can be recovered from highly cor-rupted matrix Z = X   E via the following trace norm andl1-norm minimization problemmin
X
âˆ¥Xâˆ¥âˆ—   Î»âˆ¥Z âˆ’ Xâˆ¥1,(3)where âˆ¥ï¿½âˆ¥1 indicates the element-wise l1-norm, i.e., âˆ¥Eâˆ¥1 =Î£ij |eij | and E = Z âˆ’ X. The model (3) is called the RPCAproblem [30], where f(ï¿½) is the l1-norm loss function, i.e.,f(X) = âˆ¥Z âˆ’ Xâˆ¥1. Several algorithms have been developedto solve the convex optimization problem (3), such as PCP[5] and IALM [17].A more general RMC model in [7] and [16] aims to si-multaneously recover both low-rank and sparse componentsfrom incomplete and grossly corrupted observations via theconvex optimization problem,min
X,E
âˆ¥Xâˆ¥âˆ—   Î»âˆ¥Eâˆ¥1,s.t., Pâ„¦(X   E) = Pâ„¦(Z).(4)Chen et al. [7] and Li [16] provided theoretical performanceguarantees when minimizing trace norm plus l1-norm suc-ceeds in exact recovery. Although the RMC model (4) isa convex optimization problem, and can be solved by someconvex algorithms, some additional variables need to be in-troduced. In addition, all current provable algorithms forRMC involve the singular vector decomposition (SVD), andthus they suffer from high computational cost of full or par-tial SVDs, which severely limits their applicability to  http://www.nuokui.com/pdf/8XtbRJnkm7HI.html   largescale problems. To address the issues, we propose a scalableRMC method to recover matrices with missing and grosslycorrupted observations.
3. CONVEX AND NON-CONVEX RMC MOD-ELS
From the optimization problem (4), we can find that theoptimal solution Eâ„¦C =0, where â„¦C is the complement of â„¦,i.e., the index set of unobserved entries. Consequently, wehave the following lemma.Lemma 1. The RMC problem (4) is equivalent to the fol-lowing convex optimization problem,min
X,E
âˆ¥Xâˆ¥âˆ—   Î»âˆ¥Pâ„¦(E)âˆ¥1,s.t., Pâ„¦(X   E) = Pâ„¦(Z), Eâ„¦C = 0.(5)
3.1 Convex RMC Model
To efficiently solve the RMC problem (4) and avoid in-troducing some auxiliary variables, we can assume withoutloss of generality that the unobserved data Zâ„¦C =0, and Eâ„¦Cmay be any values such that Zâ„¦C = Xâ„¦C  Eâ„¦C . Therefore,the constraint with a linear projection operator Pâ„¦ in (4) issimplified into Z = X   E. It is worth noting that at lastEâ„¦C will be set to 0 for the expected output E. Hence, wereplace the constraint Pâ„¦(Z) = Pâ„¦(X E) with Z = X E,and achieve the following equivalent form:min
X,E
âˆ¥Xâˆ¥âˆ—   Î»âˆ¥Pâ„¦(E)âˆ¥1,s.t., X   E = Z.(6)To further improve the efficiency of our convex model (6)and the scalability of handling large data sets, we also pro-pose a scalable non-convex model.
Page 33.2 Non-Convex RMC Model
The desired low-rank matrix X is factorized into two muchsmaller matrices G âˆˆ Rmï¿½d (GT G = I) and H âˆˆ Rnï¿½dwhose product is equal to X, i.e., X = GHT , where d isan upper bound for the rank of the matrix X, i.e., d â‰¥ r =rank(X). We have the following lemma.Lemma 2. Let G and H be two matrices of compatibledimensions, where G has orthogonal columns, i.e., GT G =I, then we have âˆ¥GHT âˆ¥âˆ— = âˆ¥Hâˆ¥âˆ—.By substituting GHT = X and âˆ¥Hâˆ¥âˆ— = âˆ¥Xâˆ¥âˆ— into (6), weobtain a much smaller-scale matrix trace norm minimizationproblem,min
G,H,E
âˆ¥Hâˆ¥âˆ—   Î»âˆ¥Pâ„¦(E)âˆ¥1,s.t., GHT   E = Z, GT G = I.(7)Theor  http://www.nuokui.com/pdf/8XtbRJnkm7HI.html  em 1. Suppose (X
âˆ—
, E
âˆ—
) is a solution of the con-vex problem (6) with rank(X
âˆ—
) = r, then there exists thesolution G âˆˆ Rmï¿½d, H âˆˆ Rnï¿½d and E âˆˆ Rmï¿½n to the prob-lem (7) with d â‰¥ r and Eâ„¦C =0 such that GHT = X
âˆ—
, and(GHT , E) is also a solution to the problem (6).Proof. If we know that (X
âˆ—
, E
âˆ—
) is a solution to theconvex optimization problem (6), it is also a solution tomin
X,E,rank(X)=r
âˆ¥Xâˆ¥âˆ—   Î»âˆ¥Pâ„¦(E)âˆ¥1,s.t., Pâ„¦(Z) = Pâ„¦(X   E), Pâ„¦C (E) = 0.Since for any (X
âˆ—
, E
âˆ—
) with rank(X
âˆ—
) = r, we can findG âˆˆ Rmï¿½d and H âˆˆ Rnï¿½d satisfying GHT= X
âˆ—
andPâ„¦(Z âˆ’ GHT ) = Pâ„¦(E) = Pâ„¦(E
âˆ—
), where d â‰¥ r. More-over, according to Lemma 2, we havemin
G,H,E
âˆ¥Hâˆ¥âˆ—   Î»âˆ¥Pâ„¦(E)âˆ¥1,s.t., Pâ„¦(Z) = Pâ„¦(GHT   E), GT G = I,= min
G,H,E
âˆ¥GHT âˆ¥âˆ—   Î»âˆ¥Pâ„¦(E)âˆ¥1,s.t., Pâ„¦(Z) = Pâ„¦(GHT   E),=min
X,E,rank(X)=r
âˆ¥Xâˆ¥âˆ—   Î»âˆ¥Pâ„¦(E)âˆ¥1,s.t., Pâ„¦(Z) = Pâ„¦(X   E),where Pâ„¦C (E)=0.In the following, we will discuss how to solve our convexand non-convex models (6) and (7). It is worth noting thatthe RPCA problem (3) can be viewed as a special case ofboth (6) and (7), where all entries of the corrupted matrixare directly observed. We will develop two efficient alter-nating direction augmented Lagrangian (ADAL) solvers forsolving our convex model (6) and non-convex model (7),respectively. It is also worth noting that although our non-convex algorithm will produce different estimations of G andH, the estimation of GHT is stable as guaranteed by Theo-rem 1 and the convexity of the problem (6).
4. OPTIMIZATION ALGORITHMS
In this section, we will develop two efficient alternating di-rection augmented Lagrangian (ADAL) algorithms for solv-ing both problems (6) and (7). First, we design a generalconvex ADAL scheme for solving the convex problem (6).Then we propose a similar procedure for solv  http://www.nuokui.com/pdf/8XtbRJnkm7HI.html  ing the non-convex problem (7). The convergence analysis of our algo-rithms is provided in the next section.Algorithm 1 Solving the problem (8) via ADALInput: Î³0.Initialize: x0 =0, z0 =0 and Î³0 =0.for k = 0, 1, ï¿½ï¿½ï¿½ , T doxk 1 = arg minx Lï¿½(x, zk, Î³k).zk 1 = arg minz Lï¿½(xk 1, z, Î³k).Î³k 1 = Î³k   ï¿½(Axk 1   Bzk 1 âˆ’ c).end forOutput: xk and zk.
4.1 Generic Formulation
We describe our optimization algorithm based on the ADALmethod (also known as the alternating direction method ofmultipliers) for solving (6). The ADAL method was intro-duced for optimization in the 1970â€™s, and its origins can betraced back to techniques for solving partial difference equa-tions in the 1950â€™s. It has received renewed interest due tothe fact that it is efficient to tackle large scale problemsand solve optimization problems with multiple non-smoothterms in the objective function [17]. The ADAL can beconsidered as an approximation of the method of multipli-ers. It decomposes a large global problem into a series ofsmaller subproblems, and coordinates the solutions of sub-problems to compute the globally optimal solution. Theproblem solved by ADAL takes the following generic formmin
xâˆˆRn,zâˆˆRm
f(x)   g(z),s.t., Ax   Bz = c,(8)where both f(ï¿½) and g(ï¿½) are convex functions. ADAL re-formulates the problem using a variant of the augmentedLagrangian method as follows:Lï¿½(x, z, Î³) = f(x) g(z) Î³T (Ax Bzâˆ’c) ï¿½2âˆ¥Ax Bzâˆ’câˆ¥2
2,
where Î³ is the Lagrangian multiplier and ï¿½ is a penalty pa-rameter. ADAL solves the problem (8) by iteratively min-imizing Lï¿½(x, z, Î³) over x, z, and then updating Î³, as out-lined in Algorithm 1 [2].
4.2 Convex ADAL Scheme
Our RMC optimization problem (6) can be solved byADAL. The augmented Lagrangian of (6) is given byLï¿½(X,E,Y ) = âˆ¥Xâˆ¥âˆ—   Î»âˆ¥Pâ„¦(E)âˆ¥1  âŸ¨Y, Z âˆ’ X âˆ’ EâŸ©  ï¿½2âˆ¥Z âˆ’ X âˆ’ Eâˆ¥2
F .
(9)Applying ADAL, we carry out the following updating stepsin ea  http://www.nuokui.com/pdf/8XtbRJnkm7HI.html  ch iteration.
4.2.1 Updating X
With all other variables fixed, the optimal X is the solu-tion to the following problem:min
X
âˆ¥Xâˆ¥âˆ—  ï¿½2âˆ¥X âˆ’ Z   E âˆ’ Y/ï¿½âˆ¥2
F .
(10)To solve the problem (10), the spectral soft-thresholding op-eration [6, 4] is considered as a shrinkage operation on thesingular values and is defined as follows:X = prox1/ï¿½(T) := Udiag(maxÏƒ âˆ’1ï¿½, 0)V T ,(11)
Page 4Algorithm 2 Solving RMC problem (6) via ADALInput: Given data Pâ„¦C (Z) and Î».Initialize: X0 = E0 = Y0 =0, ï¿½0 = 10
âˆ’4, ï¿½max = 1010,
Ï� = 1.10, and tol.while not converged doUpdate Xk 1 by (11).Update Ek 1 by (13) and (14).Update the multiplier Yk 1 byYk 1 = Yk   ï¿½k(Z âˆ’ Xk 1 âˆ’ Ek 1).Update the parameter ï¿½k 1 byï¿½k 1 = min(Ï�ï¿½k, ï¿½max).Check the convergence condition,âˆ¥Z âˆ’ Xk 1 âˆ’ Ek 1âˆ¥F < tol.end whileOutput: Xk and Ek, where (Ek)â„¦C is set to 0.where T := Z âˆ’ E   Y/ï¿½, maxï¿½, ï¿½ should be understoodelement-wise, U âˆˆ Rmï¿½r, V âˆˆ Rnï¿½r, and Ïƒ = (Ïƒ1,Ïƒ2,...,Ïƒr)Tâˆˆ Rrï¿½1 are obtained by SVD of T, i.e., T = Udiag(Ïƒ)V T .
4.2.2 Updating E
The optimal E with all other variables fixed is the solutionto the following problem,min
E
Î»âˆ¥Pâ„¦(E)âˆ¥1  ï¿½2âˆ¥E   X âˆ’ Z âˆ’ Y/ï¿½âˆ¥2
F .
(12)To solve the problem (12), we introduce the following well-known shrinkage (soft-thresholding) operator [8]:SÏ„ (Mij ) :=ï£±ï£´ï£²ï£´ï£³Mij âˆ’ Ï„,Mij > Ï„,Mij   Ï„, Mij < âˆ’Ï„,0,otherwise.According to the soft-thresholding operator SÏ„ , the closed-form solution Eâ„¦ to the problem (12) is given byEâ„¦ = SÎ»/ï¿½(Z âˆ’ X   Y/ï¿½)â„¦.(13)We can easily obtain the closed-form solution by zeroingthe gradient of (12) with respect to Eâ„¦C , i.e.,Eâ„¦C = (Z âˆ’ X   Y/ï¿½)â„¦C .(14)We can replace the l1-norm loss function in the sparsecomponent learning problem (12) with the l2,1-norm lossfunction for a sparse solution, such as outlier pursuit [31] orlow-rank representation [18] problems. The optimal solutionto the prob  http://www.nuokui.com/pdf/8XtbRJnkm7HI.html  lem with l2,1 regularization can be obtained bythe soft-thresholding operator in [32].Based on the description above, we develop an ADAL iter-ative algorithm for solving the RMC problem (6), as outlinedin Algorithm 2. In addition, Eâ„¦C should be set to 0 forthe expected output E. Moreover, an O(1/k) convergencerate of Algorithm 2 can be established following the conclu-sion in [11]. A fixed ï¿½ is commonly used. But there aresome schemes of varying the penalty parameter to achievebetter convergence. This algorithm can also be acceleratedby adaptively changing ï¿½. An efficient strategy [17] is to letï¿½ = ï¿½0 (the initialization in Algorithm 2) and increase ï¿½kiteratively by ï¿½k 1 = Ï�ï¿½k, where Ï� âˆˆ (1.0, 1.1] in generaland ï¿½0 is a small constant.Algorithm 2 can be easily applied to solve the RPCA prob-lem (3), where all entries of the corrupted matrix are directlyobserved. Although we also use the PROPACK package [14]to compute a partial SVD as in [25, 4, 17], Algorithm 2 em-ploys the SVD for the spectral soft-thresholding operation,and becomes slow or even impractical for large-scale prob-lems. Therefore, we further propose an efficient ADAL al-gorithm for solving the non-convex problem (7) in Section4.3. In addition, several researchers [13, 28] have providedsome matrix rank estimation strategies to compute a goodvalue r for the rank of the involved matrix. Thus, we onlyset a relatively large integer d such that d â‰¥ r.
4.3 Non-Convex ADAL Scheme
Our non-convex RMC problem (7) can also be solved byADAL. The augmented Lagrangian of (7) is given byLï¿½(G, H, E, Y ) = âˆ¥Hâˆ¥âˆ—   Î»âˆ¥Pâ„¦(E)âˆ¥1 âŸ¨Y,Z âˆ’ GHT âˆ’ EâŸ©  ï¿½2âˆ¥Z âˆ’ GHT âˆ’ Eâˆ¥2
F .
(15)We will derive our scheme for solving the following subprob-lems with respect to G, H and E, respectively,G
âˆ—
= arg min
GâˆˆRmï¿½d
Lï¿½(G, H, E, Y ),s.t., GT G = I,(16)H
âˆ—
= arg min
HâˆˆRnï¿½d
Lï¿½(G
âˆ—
,H,E,Y ),(17)E http://www.nuokui.com/pdf/8XtbRJnkm7HI.html  parâˆ—
= arg min
EâˆˆRmï¿½n
Lï¿½(G
âˆ—
, H
âˆ—
,E,Y ).(18)
4.3.1 Updating G
By fixing H and E at their latest values, and removingthe terms that do not depend on G and adding some properterms that do not depend on G, the optimization problem(16) with respect to G is reformulated as follows:min
G
âˆ¥GHT âˆ’ Pâˆ¥2
F ,
s.t., GT G = I,(19)where P := Z âˆ’ E   Y/ï¿½. This is actually the well-knownorthogonal procrustes problem [22], the optimal solution canbe given by the SVD of the matrix PH, i.e.,G
âˆ—
= Ë†U Ë†V T ,(20)where Ë†U and Ë†V are given by the SVD of PH, i.e., PH =Ë†U Ë†S Ë†V T .
4.3.2 Updating H
By fixing G and E, the optimization problem (17) withrespect to H can be rewritten as:min
H
ï¿½2âˆ¥Gâˆ—HT âˆ’ Pâˆ¥2
F   âˆ¥Hâˆ¥âˆ—.
(21)According to Theorem 2.1 in [4], the closed-form solution tothe problem (21) is given by the following theorem.Theorem 2. The trace norm minimization problem (21)has a closed-form solution given by:H
âˆ—
= prox1/ï¿½(PT G
âˆ—
).(22)Proof. The first-order necessary and sufficient optimal-ity condition for the convex problem (21) is given by0 âˆˆ âˆ‚âˆ¥Hâˆ¥âˆ—   ï¿½(G
âˆ—
HT âˆ’ P)T G
âˆ—
,
Page 5Algorithm 3 Solving RMCMF problem (7) via ADALInput: Given data Pâ„¦C (Z) and Î».Initialize: G0 = eye(m, d), H0 =0, E0 = Y0 =0, ï¿½0 =10
âˆ’4, ï¿½max = 1010, Ï� = 1.10, and tol.
while not converged doUpdate Gk 1 by (20).Update Hk 1 by (22).Update Ek 1 by (26) and (27).Update the multiplier Yk 1 byYk 1 = Yk   ï¿½k(Z âˆ’ Gk 1HT
k 1 âˆ’ Ek 1).
Update the parameter ï¿½k 1 byï¿½k 1 = min(Ï�ï¿½k, ï¿½max).Check the convergence condition,âˆ¥Z âˆ’ Gk 1HT
k 1 âˆ’ Ek 1âˆ¥F < tol.
end whileOutput: Gk, Hk and Ek, where (Ek)â„¦C is set to 0.where âˆ‚âˆ¥Hâˆ¥âˆ— denotes the set of subgradients of the tracenorm (optimality conditions for trace norm are given in [4]).Since (G
âˆ—
)T G
âˆ— http://www.nuokui.com/pdf/8XtbRJnkm7HI.html  ar= I, the optimality condition for the prob-lem (21) is rewritten as follows:0 âˆˆ âˆ‚âˆ¥Hâˆ¥âˆ—   ï¿½(H âˆ’ PT G
âˆ—
).(23)(23) is also the first-order optimality condition for the fol-lowing problem,min
H
ï¿½2âˆ¥H âˆ’ PT G
âˆ—âˆ¥2F   âˆ¥Hâˆ¥âˆ—.
(24)According to Theorem 2.1 in [4], the optimal solution of theproblem (24) is given by (22).
4.3.3 Updating E
By fixing all other variables, the optimal E is the solutionto the following problem:min
E
Î»âˆ¥Pâ„¦(E)âˆ¥1  ï¿½2âˆ¥E   G
âˆ—
(H
âˆ—
)T âˆ’ Z âˆ’ Y/ï¿½âˆ¥2
F . (25)
The updating steps for E are very similar to (13) and (14),where X is replaced by G
âˆ—
(H
âˆ—
)T as follows:E
âˆ—â„¦ = SÎ»/ï¿½(Z âˆ’ Gâˆ—
(H
âˆ—
)T   Y/ï¿½)â„¦,(26)andE
âˆ—â„¦C = (Z âˆ’ Gâˆ—
(H
âˆ—
)T   Y/ï¿½)â„¦C .(27)Following the above analysis, we obtain an ADAL algo-rithm to solve the matrix factorization based RMC (RM-CMF) problem (7), as outlined in Algorithm 3. In addi-tion, Eâ„¦C should be set to 0 for the output E. Algorithm 3can also be easily applied to solve the RPCA problem (3).
5. ALGORITHM ANALYSIS
We now provide convergence analysis and complexity anal-ysis for our algorithms.
5.1 Convergence Analysis
The convergence of ADAL to solve the standard form (8)was studied in [9, 2]. We establish the convergence of Algo-rithm 2 by transforming the RMC problem (6) into a stan-dard form (8), and show that the transformed problem sat-isfies the condition needed to establish the convergence. InAlgorithm 2, we state that our algorithm alternates betweentwo blocks of variables, X and E. Let x denote the vectoriza-tion of X, i.e., x = vec(X) âˆˆ Rmnï¿½1, e = vec(E) âˆˆ Rmnï¿½1and z = vec(Z) âˆˆ Rmnï¿½1, and f(X) := âˆ¥Xâˆ¥âˆ— and g(E) :=Î»âˆ¥Pâ„¦(E)âˆ¥1. We can write the equivalence constraint in (6)as the following form:Ax âˆ’ Be=z,where both A âˆˆ Rmnï¿½mn and B âˆˆ Rmnï¿½mn are the identitymatrices. By the definition f  http://www.nuokui.com/pdf/8XtbRJnkm7HI.html  (X) and g(E), it is easy toverify that the problem (6) and Algorithm 2 satisfy the con-ditions in Algorithm 1. Hence, the convergence of Algorithm2 is given as follows:Theorem 3. Consider the RMC problem (6), where bothf(X) and g(E) are convex functions, and A and B are bothidentity matrices and have full column rank. The sequenceXk, Ek generated by Algorithm 2 converges to an optimalsolution X
âˆ—
, E
âˆ— of the problem (6).
Hence, the sequence Xk, Ek converges to an optimal solu-tion to the RMC problem (4), where (Ek)â„¦C =0. Moreover,the convergence of our derived Algorithm 3 for the non-convex problem (7) is guaranteed, as shown in the followingtheorem.Theorem 4. Let (Gk, Hk,Ek) be a sequence generated byAlgorithm 3, then we have the following conclusions:1. (Gk, Hk, Ek) approaches to a feasible solution, i.e.,limkâ†’âˆžâˆ¥Z âˆ’ GkHT
k âˆ’ Ekâˆ¥F = 0.
2. Both sequences GkHT
k and Ek are Cauchy sequences.
3. (Gk, Hk, Ek) converges to a KKT point of the problem(7).The proof of this theorem can be found in APPENDIX.
5.2 Complexity Analysis
For the convex problem (6), the running time of Algorithm2 is dominated by that of performing SVD on the matrix ofsize m ï¿½ n. For the non-convex problem (7), Algorithm 3performs SVD on much smaller matrices of sizes m ï¿½ d andd ï¿½ n, and some matrix multiplications in (22). Hence, thetotal time complexity of Algorithm 2 and Algorithm 3 areO(tmn2) and O(t(d2m   mnd)) (d â‰ª n â‰¤ m), respectively,where t is the number of iterations.
5.3 Connections to Existing Approaches
Our non-convex method is the scalable version of our con-vex method for both RPCA and RMC problems. In addi-tion, the computational complexity of existing convex algo-rithms is at least O(mn2). It means that common RPCA(e.g., PCP [5]) and RMC (e.g., SpaRCS [27]) methods can-not handle large-scale problems, while our non-convex methodhas a complex  http://www.nuokui.com/pdf/8XtbRJnkm7HI.html  ity practically linear to the input matrix sizeand scales well to handle large-scale problems.From the problems (3) and (6), we can see that in essenceour convex method for RPCA problems is equivalent toIALM [17]. The models in [10] and [20] are the special casesof our model (7) when Î» â†’ âˆž. Moreover, the models in [33]and [3] focus only on the desired low-rank matrix. In thissense, them can be viewed as the special cases of our model(7). From the above complexity analysis, both schemes havethe same theoretical computational complexity. However,from the experimental results in the next section, we can
Page 6(a)(b)(c)Figure 1: Image used in the text removal experi-ment: (a) Input image; (b) Original image; (c) Out-lier mask.see that our non-convex method usually runs much fasterthan the methods in [33] and [3]. The following bilinear reg-ularized matrix factorization formulation in [3] is one of themost similar model to our model (7),min
G,H
Î»f(Z âˆ’ GHT )  12(âˆ¥Gâˆ¥2
F   âˆ¥Hâˆ¥2F ).
(28)
6. EXPERIMENTAL RESULTS
In this section, we evaluate both the effectiveness and ef-ficiency of our RMC and RMCMF algorithms for solvingRMC problems such as text removal, face reconstructionand background modeling. All experiments were performedusing Matlab 7.11 on an Intel(R) Core (TM) i5-4570 (3.20GHz) PC running Windows 7 with 8GB main memory.
6.1 Text Removal
We first conduct an experiment by considering a simulatedimage processing task on artificially generated data, and thegoal is to remove some generated text from an image. Theground-truth image is of size 256 ï¿½ 222 with rank equal to10 for the data matrix. We then add to the image a shortphase in text form which plays the role of outliers. Fig. 1shows the image together with the clean image and outliersmask. For fairness, we set the rank of all the algorithmsto 20, which is two times the true rank of   http://www.nuokui.com/pdf/8XtbRJnkm7HI.html  the underlyingmatrix. The input data are generated by setting 30% ofthe randomly selected pixels of the image as missing entries.We compare our two methods, RMC and RMCMF, with thestate-of-the-art methods, PCP [5], SpaRCS1 [27], RegL12[33] and BF-ALM [3]. We set the regularization parameterÎ» = 1/âˆšmax(m, n) and the stopping tolerance tol = 10
âˆ’4
for all algorithms in this experiment.The results obtained by different methods are visuallyshown in Fig. 2, where the outlier detection accuracy (thescore Area Under the receiver operating characteristic Curve,AUC) and the error of low-rank component recovery (i.e.,âˆ¥X âˆ’ Zâˆ¥F /âˆ¥Zâˆ¥F , where Z and X denote the ground-truthimage matrix and the recovered image matrix, respectively)are also presented. As far as low-rank matrix recovery is con-cerned, the five RMC methods including SpaRCS, RegL1,BF-ALM, RMC and RMCMF, outperform PCP, not onlyvisually but also quantitatively. For outlier detection, it canbe seen that our methods RMC and RMCMF perform betterthan the other methods. In short, RMC and RMCMF sig-nificantly outperform PCP, SpaRCS, RegL1 and BF-ALMin terms of both low-rank matrix recovery and spare outlieridentification. Moreover, the running time of PCP, SpaRCS,
1http://www.ece.rice.edu/~aew2/sparcs.html2https://sites.google.com/site/yinqiangzheng/
30405060700.50.60.70.80.9Given rankAUCPCPSpaRCSRegL1RMCRMCMF30405060700.20.30.40.50.6Given rankErrorPCPSpaRCSRegL1RMCRMCMF10âˆ’210âˆ’11000.750.80.850.90.95Regularization parameterAUCPCPSpaRCSRegL1RMCRMCMF10âˆ’210âˆ’11000.20.250.30.350.4Regularization parameterErrorPCPSpaRCSRegL1RMCRMCMF
Figure 3: Performance of PCP, SpaRCS, RegL1,RMC and RMCMF in terms of AUC (left) and Er-ror (right) with varying ranks (the first row) or reg-ularization parameters (the second row).RegL1, BF-ALM, RMC and RMCMF is 15.39sec, 5.74sec,3.86sec, 2.  http://www.nuokui.com/pdf/8XtbRJnkm7HI.html  62sec, 1.10sec and 0.23sec, respectively.Moreover, we further evaluate the robustness of our meth-ods, RMC and RMCMF, with respect to the regularizationparameter Î» and the given rank changes. We conduct someexperiments on the artificially generated data, and illustratethe outlier detection accuracy (AUC) and the error (Error)of low-rank component recovery, where the rank parame-ter of our RMCMF method, SpaRCS and RegL1 is cho-sen from 30, 35, ï¿½ï¿½ï¿½ , 70, and the regularization parame-ter Î» of RMC, RMCMF, PCP and RegL1 is chosen fromthe grid 0.01, 0.025, 0.05, 0.075, 0.1, 0.25, 0.5, 0.75, 1. No-tice that we only report the results of RegL1 due to thesimilar performance of RegL1 and BF-ALM. The averageAUC and Error results of 10 independent runs are shown inFig. 3, from which we can see that our RMCMF method per-forms much more robust than SpaRCS and RegL1 in termsof AUC and Error with respect to the given rank. Fur-thermore, our RMC and RMCMF methods are much morerobust than PCP and RegL1 in terms of AUC and Erroragainst the regularization parameter.
6.2 Face Reconstruction
We also test our methods for the face reconstruction prob-lems. The face database used in this experiment is a part ofExtended Yale Face Database B [15] with large corruptions.The part of Extended Yale-B consists of 320 frontal face im-ages of the first 5 classes, and each subset contains 64 imageswith varying illumination conditions and heavily â€œshadowsâ€�as outliers. The resolution of all images is 192ï¿½168 and thepixel values are normalized to [0, 1], then the pixel values areused to form data vectors of dimension 32,256. The inputdata are generated by setting 40% of the randomly selectedpixels of each image as missing entries.Fig. 4 shows some original and reconstructed images byRegL1 and CWM3 [20], and our methods, RMC and RM-CMF, where the average computational time (in seconds)
3http://www4.comp.pol  http://www.nuokui.com/pdf/8XtbRJnkm7HI.html  yu.edu.hk/~cslzhang/papers.htm
Page 7(a)(b)(c)(d)(e)(f)Figure 2: Text removal results of different methods, where the first row shows the recovered foregroundmasks and the second row shows the recovered background images: (a) PCP (AUC: 0.7934; Error: 0.3290);(b) SpaRCS (AUC: 0.8487; Error: 0.2623); (c) RegL1 (AUC: 0.8792; Error: 0.2291); (d) BF-ALM (AUC:0.8568; Error: 0.2435); (e) RMC (AUC: 0.9206; Error: 0.1987); (f) RMCMF (AUC: 0.9197; Error: 0.1996).Figure 4: Face reconstruction results. From leftcolumn to right column: input corrupted images(black pixels denote missing entries), original im-ages, reconstruction results by CWM (1554.91sec),RegL1 (2710.68sec), RMC (54.19sec) and RMCMF(21.18sec).of all these algorithms on each peopleâ€™s faces is presented.It can be observed that RMC and RMCMF perform muchbetter than the other methods visually, as they effectivelyeliminate the heavy noise and â€œshadowsâ€� and simultaneouslycomplete the missing entries. In other words, our RMC andRMCMF methods can achieve the latent features underly-ing the original images even though the observed data iscorrupted by both outliers and missing values. And impres-sively, both RMC and RMCMF are also significantly fasterthan RegL1 and CWM.
6.3 Background Modeling
In this experiment we test our methods on real surveil-lance videos for object detection and background subtrac-tion as a robust matrix completion problem. Backgroundmodeling is a crucial task for motion segmentation in surveil-lance videos. A video sequence satisfies the low-rank andsparse structures, because the background of all the framesis controlled by few factors and hence exhibits low-rankproperty, and the foreground is detected by identifying spa-tially localized sparse residuals [30, 5]. We test our methodson real surveillance videos for object detection and back-ground subtraction on four color surveillance videos: Boot  http://www.nuokui.com/pdf/8XtbRJnkm7HI.html  -strap, Lobby, Hall and Mall databases4. The data matrix Zconsists of the first 400 frames of size 120 ï¿½ 160. Since allthe original videos have colors, we first reshape every frameof the video into a long column vector and then collect allthe columns into a data matrix Z with size of 57600 ï¿½ 400.Moreover, the input data is generated by setting 10% of therandomly selected pixels of each frame as missing entries.Figs. 5 and 6 illustrate the foreground and backgroundseparation results on the Bootstrap and Mall databases,where the first and fourth columns represent the incom-plete input images, the second and fifth columns show thelow-rank recoveries, and the third and sixth columns showthe sparse components. It is clear that the background canbe effectively extracted by RMC, RMCMF, BF-ALM, andGRASTA5 [12]. Notice that SpaRCS [27] could not yield ex-perimental results on these databases because it ran out ofmemory. We can see that the decomposition results of RM-CMF and RMC are slightly better than that of GRASTAand BF-ALM. As pointed out in [23], the theoretical reasonfor the unsatisfactory performance of the l1-penalty is thatthe irrepresentable condition is not met. Hence, RMCMFincorporating with matrix factorization is more accurate inrecovering the low-rank matrix than RMC. Furthermore, wealso provide the CPU time consumption of these algorithmson all four databases, as shown in Table 1, from which wecan see that RMCMF is more than 7 times faster than RMC,more than 4 times faster than GRASTA, and more than 2times faster than BF-ALM. This further shows that RM-CMF has good scalability and can address large-scale prob-lems.
7. CONCLUSIONS
We proposed a unified RMC framework for RPCA andRMC problems. We first presented two matrix trace normregularized models that replace the linear projection op-erator constraint by a simple equality one. Then we de-
4http://perception.i2r.a  http://www.nuokui.com/pdf/8XtbRJnkm7HI.html  -star.edu.sg/bkmodel/bkindex5https://sites.google.com/site/hejunzz/grasta
Page 8Figure 5: Foreground and background separation results of different algorithms on the Bootstrap data set,where the first, second, third and last rows show the recovered low-rank and sparse images by GRASTA,BF-ALM, RMC and RMCMF, respectively.Table 1: Comparison of time costs in CPU secondsof GRASTA, BF-ALM, RMC and RMCMF on back-ground modeling datasets.
DatasetsSizesGRASTABF-ALMRMCRMCMFBootstrap57, 600 ï¿½ 400153.6593.17344.1338.32Lobby61, 440 ï¿½ 400187.43139.83390.7850.08Hall76, 032 ï¿½ 400315.11153.45461.4867.73Mall245, 760 ï¿½ 200493.92â€“â€“94.59
veloped two efficient ADAL algorithms to solve our con-vex and non-convex low-rank and sparse matrix decompo-sition problems. Finally, we analyzed the convergence ofour algorithms. Experimental results on synthetic and real-world data sets demonstrated the superior performance ofour methods compared with the state-of-the-art methods interms of both efficiency and effectiveness.Both our algorithms are essentially the Gauss-Seidel schemesof ADAL, and their Jacobi-type update schemes can beeasily implemented in parallel. Hence, our algorithms arewell suited for parallel and distributed computing and areparticularly attractive for solving certain large-scale prob-lems. Moreover, our methods can easily extended to thegeneral nonconvex low-rank inducing penalty problem [26].For future work, we will consider the compressing RMC(also called compressive principal component pursuit) prob-lem with the general linear operator as in [29].
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APPENDIX
We first prove that the boundedness of the multiplier andsome variables of Algorithm 3, and then analyze the conver-
Page 10gence of Algorithm 3. To prove the boundedness, we firstgive the following lemmas.Lemma 3. Let X be a real Hilbert space endowed with aninner product âŸ¨ï¿½âŸ© and a corresponding norm âˆ¥ï¿½âˆ¥ (the tracenorm or the l1 norm), and y âˆˆ âˆ‚âˆ¥xâˆ¥, where âˆ‚âˆ¥ï¿½âˆ¥ denotesthe subgradient. Then âˆ¥yâˆ¥
âˆ—
= 1 if x Ì¸= 0, and âˆ¥yâˆ¥
âˆ— â‰¤ 1 if
x = 0, where âˆ¥ï¿½âˆ¥
âˆ—
is the dual norm of the norm âˆ¥ï¿½âˆ¥.Lemma 4. Let Yk 1 =  http://www.nuokui.com/pdf/8XtbRJnkm7HI.html   Yk   ï¿½k(Z âˆ’ Gk 1HT
k 1 âˆ’ Ek 1),
Ë†Yk 1 = Yk   ï¿½k(Z âˆ’ Gk 1HT
k 1 âˆ’ Ek), and ËœYk 1 = Yk  
ï¿½k(Z âˆ’ Gk 1HT
k âˆ’ Ek), where Gk 1 is the optimal solution
of the problem (19). Then the sequences Yk, Ë†Yk, ËœYk,Hk and Ek produced by Algorithm 3 are all bounded.Proof. By the first-order optimality condition of the prob-lem (18) with respect to Ek 1, we have0 âˆˆ âˆ‚(Ek 1)â„¦ Lï¿½k (Gk 1, Hk 1, Ek 1, Yk),and (Yk   ï¿½k(Z âˆ’ Gk 1HT
k 1 âˆ’ Ek 1))â„¦ âˆˆ Î»âˆ‚âˆ¥(Ek 1)â„¦âˆ¥1,
i.e., (Yk 1)â„¦ âˆˆ Î»âˆ‚âˆ¥(Ek 1)â„¦âˆ¥1.Furthermore, by substituting Yk 1 = Yk ï¿½k(Zâˆ’Gk 1HT
k 1âˆ’
Ek 1) into (18), we have (Yk 1)â„¦C = 0.By Lemma 4, we haveâˆ¥Yk 1âˆ¥âˆž = âˆ¥(Yk 1)â„¦C   (Yk 1)â„¦âˆ¥âˆž â‰¤ Î»,where âˆ¥ï¿½âˆ¥âˆž denotes the matrix lâˆž-norm, i.e., âˆ¥Mâˆ¥âˆž =maxi,j |Mi,j |. Thus, the sequence Yk is bounded.By the iteration procedure of Algorithm 3, we haveLï¿½k (Gk 1, Hk 1,Ek 1, Yk) â‰¤ Lï¿½k (Gk 1, Hk 1, Ek, Yk)â‰¤Lï¿½k (Gk 1, Hk, Ek, Yk) â‰¤ Lï¿½k (Gk, Hk, Ek, Yk)=Lï¿½kâˆ’1 (Gk,Hk, Ek, Ykâˆ’1)   Î²kâˆ¥Yk âˆ’ Ykâˆ’1âˆ¥2
F ,
where Î²k = 1
2 ï¿½âˆ’2kâˆ’1(ï¿½kâˆ’1   ï¿½k) and ï¿½k = Ï�ï¿½kâˆ’1. Sinceâˆž
âˆ‘
k=1
12ï¿½
âˆ’2kâˆ’1(ï¿½kâˆ’1   ï¿½k) =
Ï�(Ï�   1)2ï¿½0
âˆž
âˆ‘
k=1
1Ï�k=Ï�(Ï�   1)2ï¿½0(Ï� âˆ’ 1)< âˆž,we have that Lï¿½k (Gk 1, Hk 1, Ek 1,Yk) is upper boundeddue to the boundedness of Yk. Thenâˆ¥Hkâˆ¥âˆ—   Î»âˆ¥Pâ„¦(Ek)âˆ¥1=Lï¿½kâˆ’1 (Gk, Hk,Ek,Ykâˆ’1) âˆ’ âŸ¨Ykâˆ’1, Z âˆ’ GkHT
k âˆ’ EkâŸ©
âˆ’ï¿½kâˆ’12âˆ¥Z âˆ’ GkHT
k âˆ’ Ekâˆ¥2F ,
=Lï¿½kâˆ’1 (Gk,Hk,Ek,Ykâˆ’1) âˆ’12ï¿½kâˆ’1(âˆ¥Ykâˆ¥2
F âˆ’ âˆ¥Ykâˆ’1âˆ¥2F ),
is upper bounded, i.e., Hk and Ek are bounded. Sinceâˆ¥GkHT
k âˆ¥âˆ— = âˆ¥Hkâˆ¥âˆ—, GkHTk  is also bounded.
We next prove that ËœYk is bounded. Since Gk 1 is theoptimal solution of the problem (19), then we haveâˆ¥Yk   ï¿½k(Z âˆ’ Gk 1HT
k âˆ’ Ek)âˆ¥2F
â‰¤âˆ¥Yk   ï¿½k(Z âˆ’ GkHT
k âˆ’ Ek)âˆ¥2F .
By the definition of ËœYk 1, and ï¿½k 1 = Ï�ï¿½k, thus,âˆ¥ËœYk 1âˆ¥2
F â‰¤ âˆ¥(1   Ï�)Yk âˆ’ Ï�Ykâˆ’1âˆ¥2F .
By the boundedness of Hk and Yk, then the sequence ËœYkis bounded.The fi  http://www.nuokui.com/pdf/8XtbRJnkm7HI.html  rst-order optimality condition of the problem (21)with respect to Hk 1 is rewritten as follows:GT
k 1
Ë†Yk 1 âˆˆ âˆ‚âˆ¥HT
k 1âˆ¥âˆ—.
According to Lemma 4, we have âˆ¥GT
k 1
Ë†Yk 1âˆ¥2 â‰¤ 1, whereâˆ¥Mâˆ¥2 denotes the spectral norm of M and is equal to themaximum singular value of M. Thus, GT
k 1
Ë†Yk 1 is bounded.Let G
âŠ¥k 1 denote the orthogonal complement of Gk 1, i.e.,
G
âŠ¥k 1Gk 1 = 0, then we have
(G
âŠ¥k 1)T Ë†Yk 1
=(G
âŠ¥k 1)T (Yk   ï¿½k(Z âˆ’ Gk 1HTk 1 âˆ’ Ek)),
=(G
âŠ¥k 1)T (Yk   ï¿½k(Z âˆ’ Ek)),
=(G
âŠ¥k 1)T (Yk   ï¿½k(Z âˆ’ Gk 1HTk âˆ’ Ek)),
=(G
âŠ¥k 1)T ËœYk 1.
Thus, (G
âŠ¥k 1)T Ë†Yk 1 is bounded due to the boundedness
of ËœYk. Then we haveâˆ¥Ë†Yk 1âˆ¥2 = âˆ¥GT
k 1
Ë†Yk 1   (G
âŠ¥k 1)T Ë†Yk 1âˆ¥2
â‰¤âˆ¥GT
k 1
Ë†Yk 1âˆ¥2   âˆ¥(G
âŠ¥k 1)T Ë†Yk 1âˆ¥2.
Since both GT
k 1
Ë†Yk 1 and (G
âŠ¥k 1)T Ë†Yk 1 are bounded, the
sequence Ë†Yk is bounded.Proof of Theorem 4:Proof. 1. By Z âˆ’ Gk 1HT
k 1 âˆ’ Ek 1 = ï¿½âˆ’1k (Yk 1 âˆ’ Yk),
the boundedness of Yk and limkâ†’âˆž ï¿½k = âˆž, we havelim
kâ†’âˆž
Z âˆ’ Gk 1HT
k 1 âˆ’ Ek 1 = 0.
Thus, (Gk, Hk, Ek) approaches to a feasible solution.2. We prove that the sequences Ek and GkHT
k  are
Cauchy sequences.By âˆ¥Ek 1 âˆ’ Ekâˆ¥ = ï¿½
âˆ’1k âˆ¥Yk 1 âˆ’ Ë†Yk 1âˆ¥ = o(ï¿½âˆ’1k ) andâˆž
âˆ‘
k=1
ï¿½
âˆ’1kâˆ’1 =
Ï�ï¿½0(Ï� âˆ’ 1)< âˆž,thus, Ek is a Cauchy sequence, and it has a limit E
âˆ—
.Similarly, GkHT
k  is also a Cauchy sequence, therefore it
has a limit Gâˆ—(H
âˆ—
)T .3. According to Algorithm 3, the first-order optimalityconditions of the problems (25) and (21) at the k-th iterationis formulated as follows:GT
k (Ykâˆ’1   ï¿½kâˆ’1(Z âˆ’ GkHTk âˆ’ Ekâˆ’1)) âˆˆ âˆ‚âˆ¥HTk âˆ¥âˆ—,
and(Ykâˆ’1   ï¿½kâˆ’1(Z âˆ’ GkHT
k âˆ’ Ek))â„¦ âˆˆ Î»âˆ‚âˆ¥(Ek)â„¦âˆ¥1.
Since both Ek and GkHT
k  are Cauchy sequences, let
E
âˆ—
and  http://www.nuokui.com/pdf/8XtbRJnkm7HI.html   G
âˆ—
(H
âˆ—
)T be limit of Ek and GkHT
k , respec-
tively. By the definition of Yk, we have(G
âˆ—
)T Y
âˆ— âˆˆ âˆ‚âˆ¥(Hâˆ—
)T âˆ¥âˆ—, (Y
âˆ—
)â„¦ âˆˆ Î»âˆ‚âˆ¥(E
âˆ—
)â„¦âˆ¥1,and (G
âˆ—
,H
âˆ—
, E
âˆ—
) is a feasible solution, i.e.,Z = G
âˆ—
(H
âˆ—
)T   E
âˆ—
,and G
âˆ—
(G
âˆ—
)T = I.Thus, (G
âˆ—
, H
âˆ—
, E
âˆ—
) is a KKT point of the problem (7).
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