Free Document Search and Download
http://www.downhi.com/
　　
Transport Level Protocols
：
http://www.nuokui.com/pdf/7-afDG2YhzTI.html

Page 1Transport Level Protocols
The transport level provides end-to-end communication between processes executing ondifferent machines. Although the services provided by a transport protocol are similar tothose provided by a data link layer protocol, there are several important differencesbetween the transport and lower layers:1. User Oriented. Application programmers interact directly with the transport layer,and from the programmers perspective, the transport layer is the â€œnetworkâ€�. Thus,the transport layer should be oriented more towards user services than simply reflectwhat the underlying layers happen to provide. (Similar to the beautification principlein operating systems.)2. Negotiation of Quality and Type of Services. The user and transport protocol mayneed to negotiate as to the quality or type of service to be provided. Examples? Auser may want to negotiate such options as: throughput, delay, protection, priority,reliability, etc.3. Guarantee Service. The transport layer may have to overcome service deficiencies ofthe lower layers (e.g. providing reliable service over an unreliable network layer).4. Addressing becomes a significant issue. That is, now the user must deal with it;before it was buried in lower levels. How does a user open a connection to â€œthe mailserver process on wpiâ€�?Two solutions:(a) Use well known addresses that rarely if ever change, allowing programs to â€œwireinâ€� addresses. For what types of service does this work? While this works forservices that are well established (e.g., mail, or telnet), it doesnâ€™t allow a user toeasily experiment with new services.(b) Use a name server. Servers register services with the name server, which clientscontact to find the transport address of a given service.In both cases, we need a mechanism for mapping high-level service names intolow-level encodings that can be used within packet headers of the network protocols.In its general form, the problem is quite complex http://www.nuokui.com/pdf/7-afDG2YhzTI.html .One simplification is to break the problem into two parts: have transport addressesbe a combination of machine address and local process on that machine.CS 5131week10-transport.tex
Page 25. Storage capacity of the subnet. Assumptions valid at the data link layer do notnecessarily hold at the transport Layer. Specifically, the subnet may buffer messagesfor a potentially long time, and an â€œoldâ€� packet may arrive at a destination atunexpected times.6. We need a dynamic flow control mechanism. The data link layer solution ofpreallocating buffers is inappropriate because a machine may have hundreds ofconnections sharing a single physical link. In addition, appropriate settings for theflow control parameters depend on the communicating end points (e.g., Craysupercomputers vs. PCs), not on the protocol used.Donâ€™t send data unless there is room. Also, the network layer/data link layer solutionof simply not acknowledging frames for which the receiver has no space isunacceptable. Why? In the data link case, the line is not being used for anythingelse; thus retransmissions are inexpensive. At the transport level, end-to-endretransmissions are needed, which wastes resources by sending the same packet overthe same links multiple times. If the receiver has no buffer space, the sender shouldbe prevented from sending data.7. Deal with congestion control. In connectionless internets, transport protocols mustexercise congestion control. When the network becomes congested, they must reducerate at which they insert packets into the subnet, because the subnet has no way toprevent itself from becoming overloaded.8. Connection establishment. Transport level protocols go through three phases:establishing, using, and terminating a connection.For datagram-oriented protocols, opening a connection simply allocates andinitializes data structures in the operating system kernel.Connection oriented protocols o http://www.nuokui.com/pdf/7-afDG2YhzTI.html ften exchanges messages that negotiate options withthe remote peer at the time a connection is opened. Establishing a connection maybe tricky because of the possibility of old or duplicate packets.Finally, although not as difficult as establishing a connection, terminating aconnection presents subtleties too. For instance, both ends of the connection must besure that all the data in their queues have been delivered to the remote application.Weâ€™ll look at these issues in detail as we examine TCP and UDP. Not too much of OSIterminology as discussed by Tanenbaum.CS 5132week10-transport.tex
Page 3User Datagram Protocol (UDP)
UDP provides unreliable datagram service. It uses the raw datagram service of IP and doesnot add acknowledgements or retransmissions.Need delivery to a process. The first difference between UDP and IP is that IP includes onlyenough information to deliver a datagram to the specified machine. Transport protocolsdeal with process-to-process communication. How can we specify a particular process?Although it is convenient to think of transport service between processes, this leads tosome problems:â€¢ Processes are identified differently on different machines; we donâ€™t want to havemachine or operating system dependencies in our protocol.â€¢ Processes may terminate and restart. If a machine reboots, we donâ€™t want to have totell other machines about it.â€¢ Associating a single process with a connection makes it difficult to have multipleprocesses servicing client requests (e.g. file server processes on a file server).The solution is to add a level of indirection. Transport level address refer to serviceswithout regard to who actually provides that service. In most cases, a transport servicemaps to a single process.TCP and UDP use ports to identify services on a machine. Conceptually, ports behave likemailboxes. Datagrams destined for a port are queued at the port until some http://www.nuokui.com/pdf/7-afDG2YhzTI.html process readsthem, and each service has its own mailbox.CS 5133week10-transport.tex
Page 4Like all packets weâ€™ve seen, UDP datagrams consist of a UDP header and some data. TheUDP header contains the following fields:Source port (16 bits) : Port number of the sender.Destination port (16 bits) : Port number of the intended recipient. UDP software uses thisnumber to demultiplex a datagram to the appropriate higher-layer software (e.g. aspecific connection).Length (16 bits) : Length of the entire UDP datagram, including header and data.Checksum (16 bits) : Checksum of entire datagram (including data).CS 5134week10-transport.tex
Page 5The checksum field is unusual because it includes a 12-byte pseudo header that is notactually part of the UDP datagram itself. The information in the pseudo header comesfrom the IP datagram header:IP source address (4 bytes) : Sending machine.IP destination address (4 bytes) : Destination machine.UDP Length (2 bytes) : Length of UDP datagram, as given by the lengths in the IPheader.protocol (1 byte) : protocol field of the IP header; should be 17 (for UDP)!zero (1 byte) : one byte pad containing zero.The purpose of the pseudo header is to provide extra verification that a datagram has beendelivered properly. To see why this is appropriate, recall that because UDP is a transportprotocol it really deals with transport addresses. Transport addresses should uniquelyspecify a service regardless of what machine actually provides that service.Note: the use of a pseudo header is strong violation of our goal of layering. However, thedecision is a compromise based on pragmatics. Using the IP address as part of thetransport address greatly simplifies the problem of mapping between transport leveladdresses and machine addresses.Port AddressesHow are port addresses be assigned?â€¢ Port numbers 0-255 for reserved for well-known ports. They are reserved http://www.nuokui.com/pdf/7-afDG2YhzTI.html for suchuniversal services as mail, telnet, and ftp. Well-known ports are administrated by acentral authority. Also ports for services specific to UNIX machines (/etc/services).â€¢ Sites are free to assign the remaining ports any way they wish.Note: UDP does not address the issue of flow control or congestion control. Thus, it isunsuitable for use as a general transport protocol.UDP datagrams are reliable on the same machine and highly reliable on a LAN such asEthernet.CS 5135week10-transport.tex
Page 6Transmission Control Protocol (TCP)
TCP provides reliable, full-duplex, byte stream-oriented service. It resides directly aboveIP (and adjacent to UDP), and uses acknowledgments with retransmissions to achievereliability. TCP differs from the sliding window protocols we have studied so far in thefollowing ways:1. When using TCP, applications treat the data sent and received as an arbitrary bytestream.The sending TCP module divides the byte stream into a set of packets calledsegments, and sends individual segments within an IP datagram.TCP decides where segment boundaries start and end (the application does not!). Incontrast, individual packets are handed to the data link protocols.2. The TCP sliding window operates at the byte level rather than the packet (orsegment) level.The left and right window edges are byte pointers.3. Segment boundaries may change at any time. TCP is free to retransmit two adjacentsegments each containing 200 bytes of data as a single segment of 400 bytes.4. The size of the send and receive window change dynamically. In particular,acknowledgments contain two pieces of information:1) A conventional ACK indicating what has been received, and2) The current receiverâ€™s window size; that is, the number of bytes of data thereceiver is willing to accept.The presence of flow control at the transport level is important because it allows aslow receiver to shut dow http://www.nuokui.com/pdf/7-afDG2YhzTI.html n a fast sender. For example, a PC can direct asupercomputer to stop sending additional data until it has processed the data italready has.CS 5136week10-transport.tex
Page 7TCP HeaderTCP segments contain a TCP header followed by user data. TCP segments contain thefollowing fields:Source & destination port (2 ï¿½ 16 bits) : TCP port number of the sender andreceiver. TCP ports are essentially the same as UDP ports, but are assignedseparately. Thus, TCP port 54 may refer to a different service than UDP port 54.Sequence number (32 bits) : The sequence number of the first byte of data in the dataportion of the segment.Acknowledgment number (32 bits) : The next byte expected. That is, the receiverhas received up to and including every byte prior to the acknowledgment.Why use 32-bit sequence numbers? Transport protocols must always consider thepossibility of delayed datagrams arriving unexpectedly.Consider the following:1. Suppose we use a sequence number space of 16 bits (0â€“65535).2. Application A sends B several megabytes of data.3. Each segment contains 1K bytes of data. How long before we start reusingsequence numbers? After only 65 segments.4. Our internet is really misbehaving:1) A retransmits every segment 3 times. (Perhaps our retransmit timers arewrong.)2) Packets arenâ€™t being lost, just delayed.5. At some point, TCP B expects sequence numbers 0â€”4096, but an old duplicatehaving a sequence number of 1024 arrives. B will incorrectly accept theduplicate as new data.6. The described scenario is not entirely unrealistic. For example, a cross-countryfile transfer can easiliy have a throughput of greater than 20 kbps. (e.g., 20 1ksegments per second).Insuring that our sequence number space is large enough to detect old (invalid)datagrams depends on two factors:1. The amount of wall-clock time that a datagram can remain in the network.2. The amount of time that elapses before a giv http://www.nuokui.com/pdf/7-afDG2YhzTI.html en sequence number becomesreused. Thus, we use 32 bit sequence numbers. In addition, now we see why IPhas a TTL field â€” we need to insure that datagrams donâ€™t stay in the networkfor too long.CS 5137week10-transport.tex
Page 8Flow control window (16 bits) : The size of the receive window, relative to theacknowledgment field. The sender is not allowed to send any data that extendsbeyond the right edge of the receiverâ€™s receive window. If the receiver cannot acceptany more data, it advertises a flow-control window of zero.Checksum (16 bits) : Checksum of TCP header and data.Options (variable length) : Similar to IP options, but for TCP-specific options.One interesting option is the maximum segment size option, which allows the senderand receiver to agree on how large segments can be. This allows a small machinewith few resources to prevent a large machine from sending segments that are toolarge for the small machine to handle. On the other hand, larger segments are moreefficient, so they should be used when appropriate.Padding (variable) : Padding to insure that the size of the TCP header is a multiple of32 bits.Data offset (4 bits) : The number of 32-bit words in the TCP header. Used to locatethe start of the data section.Note: A TCP segment does not have to contain any data.Urgent pointer (16 bits) : When urgent data is present, this field indicates the byteposition (relative to the sequence number) just past urgent data.The urgent pointer is something we have not encountered before. It allows thesending application to indicate the presence of high-priority data that should beprocessed ASAP (e.g., drop what you are doing and read all the input).One example use is when a telnet user types CTRL-C to abort the current process.Most likely, the user would like to get a prompt right away and does not want to seeany more output from the aborted job. Unfortunately, there may be thousands http://www.nuokui.com/pdf/7-afDG2YhzTI.html ofbytes of data already queued in the connection between the remote process and thelocal terminal.The local shell places the CTRL-C in the input stream and tells the remote telnetthat urgent data is present. The remote telnet sees the urgent data, then quicklyreads the data, and when it sees the CTRL-C, throws away all the input and kills therunning job. The same type of action then takes place so that the remote telnet cansignal the local telnet to throw away any data that is in the pipeline.CS 5138week10-transport.tex
Page 9Flags (6 bits) : The flags field consists of 6 1-bit flags:Urgent pointer (URG) : If set, the urgent pointer field contains a valid pointer. Ifthe urgent pointer flag is 0, the value of the urgent field is ignored.Acknowledgment valid (ACK bit) : Set when the acknowledgment field is valid.In practice, the only time that the ACK bit is not set is during the 3-wayhandshake at the start of the connection.Reset (RST) : The reset flag is used to abort connections quickly. It is used tosignal errors rather than the normal termination of a connection when bothsides have no more data to send.Upon receipt of a RST segment, TCP aborts the connection and informs theapplication of the error.Push (PSH) : Flush any data buffered in the sender or receiverâ€™s queues and handit to the remote application.The PSH bit is requested by the sending application; it is not generated by TCPitself. Why is it needed?1. TCP decides where segment boundaries start and end.2. The sending TCP is free to delay sending a segment in the hope that theapplication will generate more data shortly. This performance optimizationallows an application to (inefficiently) write one byte at a time, but haveTCP package many bytes into a single segment.3. A client may send data, then wait for the serverâ€™s response. What happensnext? If TCP (either the sender or receiver) is buffering the request, theserv http://www.nuokui.com/pdf/7-afDG2YhzTI.html er application wonâ€™t have received the request, and the client will waitforever (e.g., deadlock).4. To prevent deadlock, the client sets the PSH flag when it sends the last byteof a complete request. The PSH directs TCP to flush the data to the remoteapplication.Synchronization (SYN) : Used to initiate a new connection. (Described below.)Finish (FIN) : Used to close a connection. (Described below.)CS 5139week10-transport.tex
Page 103-Way Handshakepg 395 TanenbaumTCP uses a 3-way handshake to initiate a connection. The handshake serves two functions:1. It ensures that both sides are ready to transmit data, and that both ends know thatthe other end is ready before transmission actually starts.2. It allows both sides to pick the initial sequence number to use.When opening a new connection, why not simply use an initial sequence number of 0?Because if connections are of short duration, exchanging only a small number of segments,we may reuse low sequence numbers too quickly. Thus, each side that wants to send datamust be able to choose its initial sequence number. The 3-way handshake proceeds asfollows:1. TCP A picks an initial sequence number (A SEQ) and sends a segment to Bcontaining: SYN FLAG=1, ACK FLAG=0, and SEQ=A SEQ.2. When TCP B receives the SYN, it chooses its initial sequence number (B SEQ) andsends a TCP segment to A containing: ACK=(A SEQ 1), ACK BIT=1,SEQ=B SEQ, SYN FLAG=1.3. When A receives Bâ€™s response, it acknowledges Bâ€™s choice of an initial sequencenumber by sending a dataless third segment containing: SYN FLAG=0,ACK=(B SEQ 1), ACK BIT=1, SEQ=A SEQ 1 (data length = 0).4. Data transfer may now begin.Note: The sequence number used in SYN segments are actually part of the sequencenumber space. That is why the third segment that A sends contains SEQ=(A SEQ 1).This is required so that we donâ€™t get confused by old SYNs that we have already seen.To insure that old segme http://www.nuokui.com/pdf/7-afDG2YhzTI.html nts are ignored, TCP ignores any segments that refer to a sequencenumber outside of its receive window. This includes segments with the SYN bit set.CS 51310week10-transport.tex
Page 11Terminating ConnectionsAn application sets the FIN bit when it has no more data to send. On receipt of a FINsegment, TCP refuses to accept any more new data (data whose sequence number isgreater than that indicated by the FIN segment).Closing a connection is further complicated because receipt of a FIN doesnâ€™t mean that weare done. In particular, we may not have received all the data leading up to the FIN (e.g.,some segments may have been lost), and we must make sure that we have received all thedata in the window.Also, FINs refer to only 1/2 of the connection. If we send a FIN, we cannot send any morenew data, but we must continue accepting data sent by the peer. The connection closesonly after both sides have sent FIN segments.Finally, even after we have sent and received a FIN, we are not completely done! We mustwait around long enough to be sure that our peer has received an ACK for its FIN. If it hasnot, and we terminate the connection (deleting a record of its existence), we will return aRST segment when the peer retransmits the FIN, and the peer will abort the connection.Two-army ProblemWhite army to attack the blue. There is no protocol for correctly coordinating the attack.Can only communicate through unreliable means. Is the last messenger necessary? Yes.There is no satisfactory solution to the problem. Analagous to closing a connection. Bestwe can do is get it right most of the time.CS 51311week10-transport.tex
Page 12TCP Congestion Control
Transport protocols operating across connectionless networks must implement congestioncontrol. Otherwise, congestion collapse may occur. Congestion collapse occurs when thenetwork is so overloaded that it is only forwarding retransmissi http://www.nuokui.com/pdf/7-afDG2YhzTI.html ons, and most of them aredelivered only part way before being discarded. Congestion control refers to reducing theoffered load on the network when it becomes congested.What factors govern the rate at which TCP sends segments?1. The current sending window size specifies the amount of data that can be intransmission at any one time. Small windows imply little data, large windows implya large amount of data.2. If our retransmit timer is too short, TCP retransmits segments that have beendelayed, but not lost, increasing congestion at a time when the network is probablyalready congested!Both of these factors are discussed in the following subsectionsCS 51312week10-transport.tex
Page 13TCP Retransmission Timers
What value should TCP use for a retransmission timer?1. If our value is too short, we will retransmit prematurely, even though the originalsegment has not been lost.2. If our value is too long, the connection will remain idle for a long period of time aftera lost segment, while we wait for the timer to go off.3. Ideally, we want our timer to be close to the true round trip (delay) time (RTT).Because the actual round trip time varies dynamically (unlike in the data link layer),using a fixed timer is inadequate.To cope with widely varying delays, TCP maintains a dynamic estimate of the currentRTT:1. When sending a segment, the sender starts a timer.2. Upon receipt of an acknowledgment, stop the timer and record the actual elapseddelay between sending the segment and receiving its ACK.3. Whenever a new value for the current RTT is measured, it is averaged into asmoothed RTT (SRTT) as follows:SRTT = (Î± ï¿½ SRTT) ((1 âˆ’ Î±) ï¿½ RT T)Î± is known as a smoothing factor, and it determines how much weight the newmeasurement carries. When Î± is 0, we simply use the new value; when Î± is 1, weignore the new value.Typical values for Î± lie between .8 and .9.Because the actual RTT naturally http://www.nuokui.com/pdf/7-afDG2YhzTI.html varies between successive transmissions due tonormal queuing delays, it would be a mistake to throw out the old one and use thenew one. Use of the above formula causes us to change our SRTT estimate slowly, sothat we donâ€™t overreact to wild fluctuations in the RTT.CS 51313week10-transport.tex
Page 14Because the SRTT is only an estimate of the actual delay, and actual delays vary frompacket to packet, set the actual retransmission timeout (RTO) for a segment to besomewhat longer than SRTT. How much longer?TCP also maintains an estimate of the mean deviation (MDEV) of the RTT. MDEV is thedifference between the measured and expected RTT and provides a close approximation tothe standard deviation. Its computation is as follows:SMDEV = (Î± ï¿½ SMDEV) ((1 âˆ’ Î±) ï¿½ MDEV)Finally, when transmitting a segment, set its retransmission timer to RTO:RT O = SRTT 4 ï¿½ SMDEVWas originally proposed as 2, but further experience has shown 4 to be better.Early versions of TCP (4.2 and 4.3 BSD) used a much simpler retransmission algorithmthat resulted in excessive retransmissions under some circumstances. Indeed, improperretransmission timers led to excessive retransmissions which contributed to congestioncollapse.CS 51314week10-transport.tex
Page 15Slow-Start TCP
The second congestion control mechanism in TCP adjusts the size of the sending windowto match the current ability of the network to deliver segments:1. If the send window is small, and the network is idle, TCP will make inefficient use ofthe available links.2. If the send window is large, and the network is congested, most segments will beusing gateway buffer space waiting for links to become available.3. Even in an unloaded network, the optimal window size depends on network topology:To keep all links busy simultaneously, exactly one segment should be in transmissionon each link along the path. Thus, the optimal window siz http://www.nuokui.com/pdf/7-afDG2YhzTI.html e depends on the actualpath and varies dynamically.TCP uses a congestion window to keep track of the appropriate send window relative tonetwork load. The congestion window is not related to the flow-control window, as the twowindows address orthogonal issues. Of course, the actual send window in use at any onetime will be the smaller of the two windows. There are two parts to TCPâ€™s congestioncontrol mechanism:1. Increase the senderâ€™s window to take advantage of any additional bandwidth thatbecomes available.This case is also referred to as congestion avoidance and is handled by slowly, butcontinually, increasing the size of the send window. We want to slowly take advantageof available resources, but not so fast that we overload the network. In particular wewant to increase so slowly that we will get feedback from the network or remote endof the connection before weâ€™ve increased the level of congestion significantly.2. Decrease the senderâ€™s window suddenly and significantly in response to congestion.This case is known as congestion control and is handled by decreasing the windowsuddenly and significantly, reacting after the network becomes overloaded.CS 51315week10-transport.tex
Page 16An ExampleTo see how things work, let us assume that TCP is transmitting at just the right level forcurrent conditions. During the congestion avoidance phase, TCP is sending data at theproper rate for current conditions.To make use of any additional capacity that becomes available, the sender slowly increasesthe size of its send window. When can the sender safely increase its send window size?As long as it receives a positive indication that the data it is transmitting is reaching theremote end, none of the data is getting lost, so there must not be much (if any) congestion.Specifically, TCP maintains a variable cwnd that specifies the current size of the congestionwindow (in segments). When TCP rece http://www.nuokui.com/pdf/7-afDG2YhzTI.html ives an acknowledgment that advances the sendwindow, increase cwnd by 1/cwnd.This linear increase enlarges the size of the congestion window by one segment every roundtrip time. (The increase is linear in real time because it window increases by a constantamount every round trip time.)Because the send window continually increases, the network will eventually becomecongested. How can TCP detect congestion? When it fails to receive an ACK for asegment it just sent. When the sender detects congestion, ithalves the current size of the congestion window,saves it in a temporary variable ssthresh, andsets cwnd to 1.At this point, slow start takes over.During slow start, the sender increases cwnd by one on every new ACK.In effect, the sender increases the size of the window exponentially, doubling the windowsize every round trip time.Once cwnd reaches ssthresh, congestion avoidance takes over and the window resumes itslinear increase.CS 51316week10-transport.tex
Page 17Slow Start PropertiesSlow start has several important properties:1. If the network is congested, the transmission rate drops precipitously (e.g.,exponentially). If the network is congested, it is better to be conservative and stoptransmitting quickly.2. Increasing the size of the send window linearly is necessary. Analysis and simulationshows that an exponential increase is unstable, while a linear increase is not.3. If a segment has been lost, do we just retransmit the lost segment, or everything inthe send window? Sending just the segment known to be lost would make better useof network resources (in general). Moreover, when the ACK for the retransmittedsegment finally arrives, the ACK will uncover an entire window of new data (assumingthat only the one segment was lost). If the sender transmits an entire windowâ€™s worthof data at once, the data will be sent as a burst. If the network is operating near itscongestion le http://www.nuokui.com/pdf/7-afDG2YhzTI.html vel, a packet burst is likely to result in dropped packets.Slow start guarantees that a sender will never transmit more than two back-to-backpackets.Finally, how does TCP detect the presence of congestion? Because source quench messagesare unreliable, TCP assumes that all lost packets result from congestion. Thus, aretransmission event triggers the slow start phase of the algorithm.CS 51317week10-transport.tex
Page 18Nagleâ€™s Algorithm
To avoid sending too many small packets Nagle proposed that no â€œless than fullâ€� packetsshould be sent if unACKed packets exist.The idea is to avoid silly window syndrome where many one-byte data packets are sent oneafter another.Works well in reducing network congestion, but some interactive applications such asX-Windows or HTTP/1.1 pipelining must disable it to obtain better performance.Otherwise X-Windows exhibits jerky mouse movement and HTTP/1.1 with pipeliningexhibits delays in sending requests.
Wireless TCP
On wireless links, dropped packets are not necessarily because of congestion, but because ofbit errors. Donâ€™t want TCP to react to errors (timeouts) by reducing the congestionwindow.CS 51318week10-transport.tex
Page 19Domain Name System (DNS)
Lower-level protocol layers use compact 32-bit Internet addresses. In contrast, users prefermeaningful names to denote objects (e.g., eve). Using high-level names requires an efficientmechanism for mapping between high-level names and low-level addresses.Originally, the Internet was small and mapping between names and addresses wasaccomplished using a centrally-maintained file called hosts.txt. To add a name or change anaddress required contacting the central administrator, updating the table, and distributingit to all the other sites. This solution worked at first because most sites had only a fewmachines, and the table didnâ€™t require frequent changes. The centrally-maint http://www.nuokui.com/pdf/7-afDG2YhzTI.html ained tablesuffered from several drawbacks:1. The name space was flat, and no two machines could use the same machine name.2. As the Internet grew, changes to the database took days to weeks to take effect.3. The central site (nic.ddn.mil, previously known as sri-nic.arpa) became congestedwith the increase in the number of sites retrieving copies of the current table.4. The Internet grew at an astonishing rate.CS 51319week10-transport.tex
Page 20The Domain Name System (DNS) is a hierarchical, distributed naming system designed tocope with the problem of explosive growth:1. It is hierarchical because the name space is partitioned into subdomains.2. It is distributed because management of the name space is delegated to local sites.Local sites have complete control (and responsibility) for their part of the name space.DNS queries are handled by servers called name servers.3. It does more than just map machine names to internet addresses. For example, itallows a site to associate multiple machines with a single, site-wide mailbox name.In the DNS, the name space is structured as a tree, with domain names referring to nodesin the tree. The tree has a root, and a fully-qualified domain name is identified by thecomponents of the path from the domain name to the root.In figure cs.purdue.edu, garden.wpi.edu, and decwrl.dec.com are fully-qualified domainnames.The top level includes several subdomains, including (among others):edu: Educational organizations (500,000 registered.)com: Companies (e.g., ibm.com). (460,000 .)net: Organizations offering network service (e.g., nyser.net). (18,000 .)gov: Government organizations (e.g., nsf.gov). (100,000 .)CS 51320week10-transport.tex
Page 21Resource RecordsThe DNS links data objects called resource records (RRs) to domain names. RRs containinformation such as internet addresses or pointers to name servers.Resource records consist o http://www.nuokui.com/pdf/7-afDG2YhzTI.html f five parts:Owner (variable length): The domain name associated with the RR.Type (16 bits): The type of data the RR contains:A: An address.MX (mail exchanger): A list of domain names that are willing to accept mailaddressed to this RRâ€™s owner. Each MX record consists of a preference number(lower numbers are preferred) and a domain name.HINFO: Information about a host such as vendor, brand, model, architecture andoperating system.PTR: Pointer to another domain name.NS: Name server.Class: The protocol type for type (e.g, Internet, ISO, etc.) Even though the DNS wasdesigned to solve an Internet problem, it can be used by other protocol families.Time to live (32 bits): The length of time that a client may cache the RR (in seconds).Note: the TTL here serves a completely different purpose than the one found in theIP header.Data (variable length): The actual data stored in the RR; actual format depends ontype and class.CS 51321week10-transport.tex
Page 22The following table gives a set of sample RRs in use at WPI. Nameservers: ns.wpi.edu,ns1.barrnet.net, ns3.cw.net and ece.wpi.edu. Information can be obtained from the Unixprogram nslookup.OWNERTYPEDATAgarden.wpi.edu HINFO DS5k/240 FDDI ULTRIXwpi.wpi.eduHINFO DS5000/260 ULTRIXgarden.wpi.edu A130.215.8.200walnut.wpi.edu A130.215.8.90wpi.wpi.eduMX0 bigboote.wpi.edugarden.wpi.edu MX0 bigboote.wpi.educs.wpi.eduMX0 owl.wpi.eduNote: The mail address cew@cs.wpi.edu is valid, even though there is no machine calledcs.wpi.edu. Also note that mail to garden and wpi go to bigboote.How does the SMTP mailer decide which machine to send mail addressed toXXX@cs.wpi.edu?1. It queries the DNS for a RR of type MX for name cs.wpi.edu. In Unix, the utilitysendmail handles the task of mail delivery.2. The returned RR contains a list of machines that vare willing to accept mail fordomain cs.wpi.edu, and the mailer attempts to contact each o http://www.nuokui.com/pdf/7-afDG2YhzTI.html ne in succession until itis able to establish a connection with a machine willing to accept the mail.3. Lower preferences are tried first. We have only one machine. Could have backups.Name servers are the programs that actually manage the name space. The name space isdivided into zones of authority, and a name server is said to be authoritative for all domainnames within its zone.Name servers can delegate responsibility for a subdomain to another name server, allowinga large name space to be divided into several smaller ones.At Purdue, for instance, the name space purdue.edu is divided into three subdomains: cs,cc, and ecn.Name servers are linked by pointers. When a name server delegates authority for asubdomain, it maintains pointers to the name servers that manage the subdomain. Thus,the DNS can resolve fully-qualified names by starting at the root and following pointersuntil reaching an authoritative name server for the name being looked up. (See the DNSrecord of type PTR.CS 51322week10-transport.tex
Page 23Note: The shape of the name space and the delegation of subdomains does not depend onthe underlying topology of the Internet.CS 51323week10-transport.tex
Page 24DNS Queries
When a client (application) has a name to translate, it sends a DNS query to a nameserver. DNS queries (and responses) are carried within UDP datagrams. There are twotypes of queries:Recursive: The server resolves the name completely, even if it has to send additionalqueries to other servers in order to obtain the desired answer.Iterative: If the name server canâ€™t answer the query, have it return a pointer to anothername server that has more information. The client then sends the query to the othername server. Note:1. If the name belongs to a subdomain, the server returns a pointer to the nameserver responsible for that part of the name space.2. If the server has no information about t http://www.nuokui.com/pdf/7-afDG2YhzTI.html he name, it returns a pointer to the rootname servers.DNS Queries (and responses) consist of four parts:Question: A section containing a list of questions (domain name, type, class triples). Asingle query can contain several questions.Answer: A section containing answers to the queries in the question section. The answersection is filled in by the server.Authority: If the query cannot be resolved, a section containing pointers to authoritativename servers that can. That is, if the query has been directed to a non-authoritativeserver, it may not be able to answer the query. This happens frequently, because aclient almost always asks its local server to translate everything, even non-localnames.Additional: RRs that are likely to be of help to the clients, such as the Internet addressof servers listed in the authority section (e.g., â€œhintsâ€�).CS 51324week10-transport.tex
Page 25Conceptually, any application that accesses information managed by the DNS must querythe DNS. In practice, DNS queries are hidden in library routines that a user simply callswithout having to worry about how they are implemented. In Unix, for example, theroutine gethostbyname(3) finds the IP address of a host. Although gethostbyname interactswith name servers, it behaves like a regular procedure call.The DNS also addresses two important issues:Caching: Clients cache responses to reduce the number of (repetitious) queries sent toother name servers. This greatly reduces the number of queries, because mostapplications refer to the same names repeatedly.Note: The owner of a RR manages the caching behavior for its names. Each RRincludes a TTL field that specifies for how long a name may be cached. For namesthat donâ€™t change often, long time outs (e.g. several days) are used.Replication: The DNS allows multiple authoritative name servers for a given zone. Thus,if a server is down, another might still be able answer http://www.nuokui.com/pdf/7-afDG2YhzTI.html a query.Typically, one name server is designated the master, with the remaining serversdesignated slaves. The master/slave machines run a special protocol so that slaveservers obtain new copies of the database whenever it changes. However, clients mayquery either masters or slaves.Is the address 130.215.24.1 hierarchical? Yes. Thus, the DNS also maps machine addressesback into host names. How? By reversing them!The top level of the name space includes the domain in-addr.arpa, and machine addressesare reversed and converted into the form: 1.24.215.130.in-addr.arpa, which can betranslated by the DNS.CS 51325week10-transport.tex

Free Document Search Engine. support all pdf,DOC,PPT,RTF,XLS,TXT,Ebook! Free download! You can search all kind of documents!
http://www.downhi.com/

