Free Document Search and Download
http://www.downhi.com/
　　
Fluid Simulation Using Implicit Particles
：
http://www.nuokui.com/pdf/2sm6Mfr2lDrI.html

Page 1Fluid Simulation Using Implicit Particles
Advanced Game Programming
Dan EnglessonJoakim KilbyJoel EkDecember 20, 2011
AbstractThis report covers the implementation of a fluid simulation using a hybrid method.The method used is heavily based on the contents of the book Fluid Simulation forComputer Graphics by Robert Bridson [1] and is commonly referred to as the PIC/FLIPmethod. In the method, the fluid surface is tracked using particles and its mass conservedby enforcing zero divergence on the deforming velocity field. We store the velocity fieldon a staggered grid as described in [2], which greatly helps to fulfill the mass-conservingcriteria. We also reconstruct the actual fluid surface by evaluating the Improved Blob-bies signed distance function introduced in [3] on a regular grid followed by a standardimplementation of Marching Cubes.We have tested our implementation using five different simulation cases and obtaingreat results, all of which are shown in the report together with benchmark data.
Page 21 Introduction
Fire, water and air, once thought of asthree of the four fundamental elementsmaking up all known substances, seem tohave more in common than once thought.All three are different types of fluids, orcompounds which are able to flow and de-form under the influence of commonly oc-curring forces such as gravity.The complex behavior of fluids has al-ways been fascinating to man and it is onlyin the latest decades that we have cometo fully understand the complex equationsgoverning their dynamic behavior. Fluidsimulation is greatly useful since it can aidin the design of buildings and construc-tions but also since it allows one to simu-late an event which never has to happen.For instance, the flooding of a city, a greatexplosion or anything else that would fit ina modern feature film.
2 Background
In order to understand how the differ-ent steps of the method work, some b http://www.nuokui.com/pdf/2sm6Mfr2lDrI.html ack-ground information is needed. This sec-tion contains an explanation of the funda-mental equations, a brief repetition of rel-evant vector calculus and a short descrip-tion of the infamous Stable Fluids method.It also explains the difference between theEulerian and the Lagrangian viewpointsas well as the benefits of using a staggeredgrid.
2.1 Governing equations
The two equations governing fluid flow arecalled the Navier-Stokes equations. Thefundamental equation is given in equation1 which describes how a velocity field Vevolves over time. Naturally, the timederivative of this velocity field must besubject to external forces. This is modeledby the F term in equation 1 and is com-monly representing gravity, wind or userinteraction. The Î½V2V term is the diffu-sion term, which models the viscosity ofthe fluid.Viscosity is a commonly used term influid simulation which simply means thetendency of the fluid to resist flow and isobserved as its thickness. For example,water flows easily and therefore has lowviscosity. Honey is thick and resists flowwhich is why its viscosity is high. Theamount of viscosity is directly controlledby the scalar Î½. It should be noted thatthis term is commonly discarded whensimulating water. The amount of numeri-cal dissipation introduced by interpolationerrors is often a good replacement for thisterm, which otherwise would be solved bya Poisson equation.âˆ‚Vâˆ‚t= F Î½V2V - V ï¿½ VV -VpÏ�(1)V ï¿½ V = 0(2)The V ï¿½ VV term is the self-advectionterm which models how the velocity fieldflows within itself. This can seem a bitstrange but it is only natural as the ve-locity field represents the movements ofthe mass of a fluid. The final term,
âˆ‡pÏ�
,is the subtraction of the pressure gradi-ent Vp over the density Ï�. When com-bining the entire equation with the con-straint in equation 2, this term is replacedby a subtraction of a pseudo-pres http://www.nuokui.com/pdf/2sm6Mfr2lDrI.html sure gra-dient. This as a result of any gradientof a scalar being curl-free and thereforeremoved when enforcing a divergence-freevelocity field due to the Helmholtz-Hodgedecomposition as stated in [4].
2.2 Representing fluids
There are two common ways of represent-ing fluids which are based on completelydifferent viewpoints. One way is to thinkof the fluid as a collection of tiny parti-cles, or atoms, which together make upthe volume of the fluid. This represen-tation is a Lagrangian representation andhas given rise to a whole family of purely1
Page 3particle-based fluid simulations of whichsmoothed particle hydrodynamics, or SPHis the most common. These methods canbe beneficial as their definition is intuitiveand understandable but have a great flaw.The calculations are based on the assump-tion that the particle density always is suf-ficient. This is not the case as particles areable to spread out, allowing for regionswith low density. In these regions, thecalculations become less accurate as theresimply is not enough information stored inthe nearby particles.Another way of representing fluids isfrom the Eulerian point of view. For thisrepresentation, the fluid is observed froma domain of interest which is divided intoa number of cells. This forms a grid,which is why the Eulerian representationalso is known as the grid-based represen-tation. Grid-based representations do notsuffer from the same problems with low-density regions as particle-based represen-tations do. Instead, other problematic is-sues arise. In order for the fluid surface tobe detailed enough, the grid must consistof a multitude of cells. It is not uncommonfor purely grid-based fluid simulations touse millions of cells. This effect is dueto the Nyquist criterion which states thatthe sampling frequency of a signal must betwice that of the highest frequency com-ponent. In other words, the http://www.nuokui.com/pdf/2sm6Mfr2lDrI.html simulationis only guaranteed to capture surface de-tails larger than the magnitude of two cellwidths. This is why the number of cellsmust be extremely large for purely grid-based methods.A fluid simulation can also use a hy-brid method, which combines the sur-face capturing possibilities of a particle-based method and couples it with anauxiliary grid to enforce accurate mass-conservation. Such a method is explainedin detail in the method section.
2.3 Operators and vector fields
In order to understand how the veloc-ity field is evolved and how the mass-conserving constraint is maintained, thefollowing three operators need to be un-derstood. Equation 3 shows the gradientoperator. It operates on a scalar field andyields a vector field with each of the par-tial derivatives as its components. Whenthe operator is applied to the cells of agrid structure, it should be interpreted asthe local change of the scalar field q. Inother words, the exchange of the propertydescribed by the scalar q.Vq =
(âˆ‚q
âˆ‚x,âˆ‚qâˆ‚y,âˆ‚qâˆ‚z
)
(3)Equation 4 shows the divergence oper-ator. Divergence is related to the gradi-ent operator and involves the same partialderivatives but instead of measuring eachderivative separately, it measures the totallocal change. As shown below, it operateson a vector field and yields a scalar field.The operator should be interpreted as thetotal increase or decrease of any propertybeing transported by the vector field u.V ï¿½ u =âˆ‚ uâˆ‚x âˆ‚ uâˆ‚y âˆ‚ uâˆ‚z(4)The Laplace operator is the most com-plicated of the three operators discussedhere. It can be seen in equation 5 and op-erates on a scalar field q. Even though theexpression involves partial derivatives ofthe second order which might seem com-plex, it is actually the divergence operatorapplied to the gradient of a scalar field. Inother words, a concise way of stating a se-quential application of http://www.nuokui.com/pdf/2sm6Mfr2lDrI.html the two operatorspreviously defined. When applied to thecells of a grid structure, it should be inter-preted as the total interchange of materialbetween all adjacent cells.V2q =âˆ‚2qâˆ‚x2 âˆ‚2qâˆ‚y2 âˆ‚2qâˆ‚z2(5)
2.4 The staggered grid
In order to apply the continuous operatorsto a discrete grid structure, the operators2
Page 4first need to be differentiated. This re-quires an introduction to a special type ofgrid, the staggered marker and cell (MAC)grid, introduced by Foster and Metaxas in[2]. The principal difference compared toa common regular grid is that the com-ponents of the velocity field are separatedand offset. This is shown in figure 1 whichshows that the sample points of the veloc-ity field coincide with the cell face bound-aries. Please note that all scalars whichare to be transported by the velocity fieldhave their sample points located at thecenter of a cell. This is important for thedefinition of the differentiated operators.Figure 1: The staggered gridThe benefit of using this structure isthat the evaluation of the discrete counter-parts of the operators previously definedbecomes greatly simplified. The structureintroduces the curious half index for whicha positive half index is the sample valuestored at the face shared between a celland its consequent cell.Consider the discrete gradient shown inequation 6 where s is the size of a cell. Thegradient is applied to the scalar q, which isstored in the center of the cells. The eval-uation position must therefore be exactlybetween two adjacent cells. Please notethat this evaluation is made component-wise and results in three different scalars,each with different evaluation positions.Also note that the evaluation positions co-incide with the sample locations of the ve-locity field components.(Vq)i 1/2,j,k =
(qi 1,j,kâˆ’qi,j,k
s
)
(Vq)i,j 1/2,k =
(qi,j 1,kâˆ’qi,j,k
s
) http://www.nuokui.com/pdf/2sm6Mfr2lDrI.html
(Vq)i,j,k 1/2 =
(qi,j,k 1âˆ’qi,j,k
s
)
(6)The definition of the discrete divergenceoperator is shown in equation 7. As withthe discrete gradient, s denotes the cellsize. Divergence operates on componentpairs of the velocity field and its evalua-tion position must therefore be the in thecenter of a cell.(V ï¿½ u)i,j,k=
ui 1/2,j,kâˆ’ uiâˆ’1/2,j,ks

ui,j 1/2,kâˆ’ ui,jâˆ’1/2,ks

ui,j,k 1/2âˆ’ ui,j,kâˆ’1/2s
(7)The discrete Laplace operator is asstated a combination of the gradient andthe divergence operator. In order to un-derstand how it is defined on the stag-gered grid, first consider the applicationof the gradient operator. As previouslystated, the evaluation position of the gra-dient is between two adjacent cells. If thedivergence operator is applied to those sixscalars, we obtain equation 8. As two op-erators are applied in effect, the scalingfactor of s2 is natural.(V2q)i,j,k=
qi 1,j,k qiâˆ’1,j,ks2

qi,j 1,k qi,jâˆ’1,ks2

qi,j,k 1 qi,j,kâˆ’1s2
-
6qi,j,ks2
(8)Please note that both the discreteLaplace operator and the discrete diver-gence operator are evaluated at the cellcenter. Since Poisson equations have theform shown in equation 9, using a stag-gered grid is clearly beneficial for solvingthese equations. Especially since it allowsfor the evaluation of central differences us-ing a width of only a single cell size.V ï¿½ u = V2q(9)3
Page 52.5 Stable Fluids
The Stable Fluids method was introducedby Jos Stam in 1999 [4]. It was the firstunconditionally stable method for fluidsimulation and introduced the concept ofsemi-Lagrangian advection. The StableFluids method calculates an approximatesolution to the Navier-Stokes equations;equation 1 and 2.A solution to equation 1 is obtained bysequentially calculating the contributionfrom each part of the equation, where foreach step the http://www.nuokui.com/pdf/2sm6Mfr2lDrI.html input is given by the outputof the previous step.In order to enforce the constraint givenby equation 2, the final velocity field ob-tained in the solution method is projectedonto its divergence-free part.The entire process is illustrated in fig-ure 2 where w0 is the velocity field fromthe previous time step and w4 is the final,divergence-free, velocity field.Figure 2: The Stable Fluids method
3 Method
3.1 Mesh conversion
In order to represent polygon mesh ob-jects as fluids or solid objects for simula-tion purposes, a conversion must be madefrom polygons into a voxel representation.To achieve this, a polygon object is readfrom an .obj file and as each triangle of theobject is processed, its vertex coordinatesare transformed into discrete grid coordi-nates. The voxel corresponding to thosegrid coordinates, the voxel in which thevertex lies, is then set as the cell-type theobject is to represent, e.g. fluid or solid.To avoid problems with triangles thatare significantly larger than the grid-resolution, a number of points are se-lected, in a random fashion, on the trian-gle surface and transformed into grid co-ordinates as well.This method creates a voxelized shell,or surface, resembling the original poly-gon object. However for simulation, a sur-face is insufficient and the voxelized modelmust be filled to create a volume.The volume is created by filling out thegaps between voxels in the representation.This is achieved by selecting a voxel whichis marked with the correct cell-type andthen stepping along the x, y and z direc-tions in turn until another voxel is foundwhich has the same cell-type. All voxelsbetween the two are then set as the correctcell-type.This method works under the assump-tion that all polygon objects are Mani-fold surfaces; there can be no holes in themesh, no self-intersection of polygons andno interior shells within the mesh.
3.2 Hybr http://www.nuokui.com/pdf/2sm6Mfr2lDrI.html id particle methods
There exist two main approaches for sim-ulating fluid effects in computer graph-ics as mentioned earlier, namely the useof Lagrangian particles or Eulerian grids.The two approaches have their strengthsand weaknesses, the Lagrangian particlesare very good with the advection part buthave problem with the pressure and in-compressibility constraint. Fortunately,the Eulerian grid approach is excellent insolving the pressure and incompressibil-ity constraint but due to interpolation er-rors from the semi-Lagrangian advection,the method has problem with the advec-tion part. One can see that where theLagrangian approach has its difficulties,the Eulerian approach is very good andby combining these two methods by let-ting Lagrangian particles handle the ad-vection part and the Eulerian grid han-dle the pressure and incompressibility con-straint, a better simulation of water effectscan be achieved.Many different hybrid approaches existssuch as particle level sets, The Particle inCell (PIC) and the Fluid Implicit Parti-4
Page 6cle (FLIP) method, where the two lattermethods will be further discussed in thispaper. The particle level set method wasintroduced by Foster and Fedkiw in [5]and the PIC method was introduced asearly as 1963 by Harlow in [6] and waslater improved by Brackbill and Ruppel[7] with the FLIP method in 1986. TheFLIP method where then introduced toincompressible flow by Zhu and Bridsonin 2005 [3] and is today a state-of-the-arttechnique for fluid simulation.3.2.1 The PIC/FLIP methodEven though the PIC and FLIP methodsare basically the same method but witha slight difference in the velocity update,the fluid characteristics differ quite a bit.A fluid that only uses PIC is more viscousthan a FLIP fluid, which is due to numeri-cal dissipation because of the double inter-polation of the velocity, but more on thatin a bit. The FLIP method http://www.nuokui.com/pdf/2sm6Mfr2lDrI.html however, haslittle viscosity and is therefore very well-suited for water effects but unwanted visi-ble noise on the surface is present. By lin-early combining the PIC and FLIP meth-ods, one obtain a fluid which has little vis-cosity and is free of surface noise.The severe numerical dissipation of thePIC method is caused by interpolation.The particle velocities are transferred tothe grid through interpolation which in-troduces some smoothing and then thesmoothed velocity values are being used tosolve the new velocities with the Navier-Stokes equations and are then interpo-lated back to the particles replacing theold velocities. As mentioned, due to thisexcessive double interpolation, a PIC fluidwill appear more viscous than a FLIPfluid. Brackbill and Ruppel solved thisproblem by instead of interpolating thenewly calculated velocities to the particlesfrom the grid and replacing the velocities,they interpolated the change in velocityand added it to the already existing parti-cle velocities. By doing so, only smoothingfrom one interpolation is performed andthus the smoothing is not accumulated asin the PIC method and makes the FLIPmethod almost free of numerical dissipa-tion. Below follows a stepwise method-of-solution for a PIC/FLIP fluid simulationand a more in-depth view of the differentsteps.1. Initialize the grid and the particle po-sitions and velocities.2. Transfer particle velocities to a stag-gered grid.3. FLIP: Save a copy of the grid veloci-ties.4. Calculate and apply external forces.5. Enforce the Dirichlet boundary con-dition.6. Classify all voxels as fluid, solid or air.7. Calculate the pseudo-pressure gradi-ent using a Preconditioned ConjugateGradient method.8. FLIP: Update particle velocities bysubtracting the new grid velocitiesfrom the saved grid velocities, inter-polate and add the difference to theparticle velocities.9. PIC: Update particle velocities b http://www.nuokui.com/pdf/2sm6Mfr2lDrI.html y in-terpolating and replacing the old ve-locities with the new grid velocities tothe particles.10. PIC/FLIP: Update the particle veloc-ities by taking the interpolated FLIPand PIC velocities from 8. and 9. andfor each particle weigh the PIC andFLIP velocities with a factor Î± be-tween zero and one.11. Update the particle positions with anODE solver with the newly createdvelocities.5
Page 73.2.2 Initialize particlesEvery voxel that is classified as fluid willhave seeded particles inside. The parti-cles are seeded in a jittered grid, much likesuper-sampling in a renderer, where eightparticles in each fluid voxel is jittered byrandomly placing the particles in a 2x2x2sub-grid. A higher number of particles canbe used in each voxel but does not neces-sarily give significantly better results butmight instead slow down the calculations.Bridson stated in [3] that eight particlesper fluid cell was enough to yield good re-sults.3.2.3 Transfer particles to gridSince the particles are randomly placedin space and the calculations of the pres-sure and incompressibility are performedon the grid, some kind of interpolation isneeded to transfer the nearby particle ve-locities to the grid. The grid velocities areupdated from the nearby particles throughtrilinear interpolation of the weighted av-erage particle velocities that lies in a cubetwice the grid cell width where the centeris at the grid-velocity component.3.2.4 Calculate external forcesThe external forces such as gravity andforces from any user interaction are addedto the velocities by simple Euler inte-gration as seen in equation 10, where Vstands for velocity, F is the external forcesand âˆ†t is the time step.Vnew = Vold Fâˆ†t(10)A simple Euler integration is enoughsince this task is unconditionally stable forreasonably small âˆ†t. This is because thereexists no feedback loop between the exter-nal forces and the veloci http://www.nuokui.com/pdf/2sm6Mfr2lDrI.html ty field.3.2.5 Enforce Dirichlet boundaryconditionThe Dirichlet boundary condition statesthat there should be no flow into or outof solid cells to which has the normal n,see equation 11 where V is the velocity inthe fluid cell and n is the normal to theneighboring solid.V ï¿½ n = 0(11)If a fluid cell has a solid neighboring cell,the velocity components are checked andif any of the velocity components point to-wards a neighboring solid cell, the velocityis projected to go along with the surface ofthe solid cell. Since the simulation is per-formed on a staggerd MAC-grid and thevelocities are divided into separate com-ponents, the projection of the velocity isvery simple. One just has to set it to zeroif the component points into a neighboringsolid cell.3.2.6 Classify voxelsFirstly, the type of every non-solid voxelis cleared and set to air. Then voxels con-taining one or more particles are set tofluid. Solid voxels are set to be solid fromthe beginning of the simulation and anddo not change their type.3.2.7 Conserving massA mass-conserving velocity field is synony-mous to a divergence-free velocity field.Conserving the mass of a fluid is there-fore equal to enforcing zero divergence onthe velocity field transporting mass.This part of a simulation step is themost computationally heavy one as it in-volves solving a Poisson equation. Re-call the previously stated Laplace opera-tor and how it was defined as a summationof the partial derivatives of the second or-der. It should be emphasized that thereis a dependency between every pair of twoadjacent cells and that the solution to aPoisson equation in effect means solving amassive system of linear equations. Beforethis task can be undertaken, a derivationof how the Poisson equation is obtained isrequired.6
Page 8The Helmholtz-Hodge decompositionstates that any vector field can be ex-pressed as a divergence-free part http://www.nuokui.com/pdf/2sm6Mfr2lDrI.html Vdf anda curl-free part Vcf as shown in equation12.V = Vdf Vcf(12)Furthermore, vector calculus states thatthe gradient of any scalar fields is, by defi-nition, curl-free. We can therefore replacethe curl-free part of our velocity field withthe gradient of an unknown scalar field,Vq. This is shown in equation 13.V = Vdf Vq(13)As with any equation, applying an oper-ator to both sides of the equality sign doesnot change equality. Thus, it is allowedto apply the divergence operator to bothsides. Since divergence is a linear opera-tor, Vï¿½(Vdf Vq) is equal to Vï¿½Vdf Vï¿½Vqand we get equation 14.V ï¿½ V = V ï¿½ Vdf Vï¿½Vq(14)Equation 14 can be simplified as we inthe decomposition step defined Vdf as be-ing divergence-free. The divergence oper-ator applied to Vdf must therefore be equalto zero. Also, since we defined the Laplaceoperator as the consequent application ofa gradient operator and a divergence op-erator, we get equation 15.V ï¿½ V = V2q(15)Equation 15 is a Poisson equation inwhich q is the unknown scalar field whichsolves the equation. By rearranging equa-tion 13 we obtain equation 16 whichclearly shows that we can enforce mass-conservation on the velocity field by find-ing the unknown scalar field q and sub-tracting its gradient, Vq.Vdf = V - Vq(16)Equation 15 is the equation which needsto be solved in order to find the scalar fieldq, often referred to as the pseudo-pressure.The left-hand side of the equation can becalculated simply by evaluating the diver-gence of the velocity field. The right-handside contains the unknown scalar field andthe Laplace operator. The definition ofthe operator is shown in equation 8 andstates that adjacent values of the unknownscalar field should be used in the calcula-tions. Naturally, this is not possible as thescalar field is unknown. However, the co-efficients are fully known as they only de-pend on the local configuration of a c http://www.nuokui.com/pdf/2sm6Mfr2lDrI.html ell.That is, if there are solid cells directly ad-jacent or if the fluid is free to exchangematerial through every cell face.The definition of the Laplace operatorbecomes somewhat different for boundaryfluid cells as the Dirichlet boundary con-dition states that there should be no flowthrough solid boundaries. The result onthe Laplace operator is that the coefficientfor the solid cell (when considering the ad-jacent fluid cell) is set to zero and that thecentral coefficient is increased by one.As the coefficients are calculated andstored, a massive system of linear equa-tions is obtained. The system is on theform Ax = b where A is the coefficient ma-trix and b is the divergence of every cell.The number of equations in this system isdirectly related to the number of cells inthe simulation grid. If there are w ï¿½ h ï¿½ dcells, the size of the coefficient matrix is(w ï¿½ h ï¿½ d)2.Since there can be at most six other cellsadjacent to every cell, this system is verysparse and can be solved efficiently by it-erative methods taking advantage of thisproperty. The memory requirement of thesparse coefficient matrix is wï¿½hï¿½dï¿½4. Thiscan be compared with the virtual size ofthe matrix previously stated.In order to solve the Poisson equation,Bridson [1] recommended the precondi-tioned conjugate gradient method with apreconditioner of the modified incompleteCholesky factorization type. This methodhas fast convergence and is able to operateon a sparse system. An implementation7
Page 9of the PCG method was made with thepseudo-code in Bridsonâ€™s book as a guide.Though it should be noted that any iter-ative method that does not require an ex-plicit representation of the A matrix couldbe used, such as the Jacobi iterative tech-nique.When the Poisson equation is solved,the gradient of the resulting scalar fieldis subtracted from the velocity field andmass-conservation is guaranteed.3.2.8 http://www.nuokui.com/pdf/2sm6Mfr2lDrI.html Update particle velocitiesThe particles need to be updated withthe newly calculated velocities which arestored on the MAC-grid. This is done bytrilinearly interpolating the velocities ofthe eight neighboring grid-velocities to theparticle and, for PIC, update the velocitywith the new velocity or for FLIP, inter-polate the change in velocity and add itto the existing particle velocity. A linearcombination of both PIC and FLIP canbe used to get a low viscosity, water-like,fluid with no surface noise. This can beseen in equation 17 where unew
p
is the newparticle velocity and Î± is the PIC blend-ing factor. The factor determines howmuch PIC, viscosity or numerical dissipa-tion there should be where 1.0 is pure PICand 0.0 is pure FLIP. The lerp() functionsrepresents the trilinear interpolation func-tion.unew
p
= Î± ï¿½ lerp(unew
grid, xp)
 (1 - Î±)[uold
p
 lerp(âˆ† ugrid, xp)](17)3.2.9 The CFL conditionThe CFL condition states that the a parti-cle should always move less than one grid-cell in each sub step. It is done by takingthe cell-width and dividing it by the maxi-mum velocity in the grid to get a stabledt.The stabledt is then compared to the ac-tual time step dt and if it is larger than dt,the stabledt is set to dt. The particles arethen advected in six sub steps until it hasreached dt. It is common to have aroundfive sub steps.3.2.10 Update particle positionsThe particles positions are advected witha Runge Kutta 2 ODE solver, which isstable as opposed to a simple Euler ODEsolver. However, the particles can occa-sionally penetrate solid boundaries due toerrors in the RK2 solver. This can causethe particle that has penetrated a solidvoxel to become stuck. To fix this prob-lem, the particles that have penetrated asolid voxel are moved back in the normaldirection to half the cell-width outside ofthe solid voxel.
3.3 Intermediate stor http://www.nuokui.com/pdf/2sm6Mfr2lDrI.html age
The fluid solver is divided into two differ-ent parts; a simulation program which isresponsible for all calculations regardingthe movement of the fluid and a visualiza-tion program which takes simulation dataas input and produces .obj files, meshes,from the data. The visualization programalso has the capability to directly visualizeparticles or surfaces.As the simulation program progresses,it sequentially writes the positions of theparticles for the current time step into abinary file. The reason for writing onlyparticle positions comes from the fact thatthe number of particles are very large andthat the positions are all that is necessaryto reconstruct surfaces as they determinethe position of the fluid.The position of a particle is repre-sented by three floating point numbers,the Cartesian coordinates x, y and z. Aseach floating point number occupies fourbytes of memory, the position of a particleoccupies 12 bytes.Table 2, in appendix A, shows the sizeof the simulation data for a few differentamounts of particles, 250 frames are savedin each of the files.8
Page 103.4 Surface reconstruction
When a simulation has been performedand stored on disk, the surface must bereconstructed in order to be rendered ina standard rendering pipeline. As mostrendering pipelines are optimized to han-dle triangles, this is often reduced to tri-angulating the simulation data. This isno easy task as there are no trivial solu-tions to the problem. Surface reconstruc-tion is commonly achieved in two distinctpasses. First, a scalar field is initializedfrom the underlying data on a regular gridusing a function. The only requirementon this function is that it maps the dataset onto a real-valued scalar. Note thatreal-valued implies that the function canassume both positive and negative valuesand that scalar means single value. In thesecond pass, a certain value (an iso-level) http://www.nuokui.com/pdf/2sm6Mfr2lDrI.html of the calculated scalar field is chosen tobe visualized. The reconstructed surfaceis created where the function assumes thisvalue.3.4.1 The signed distance functionWhen dealing with point clouds, the map-ping function commonly measures dis-tance to the nearest point or average dis-tance to some of the nearest points. Zhuand Bridson introduced a method calledImproved Blobbies in [3]. The methodcalculates, for every grid corner, the av-erage position and radius of the nearbypoints and determines whether the gridcorner is located within the average radiusof the average position. This gives neg-ative distances for corners that are closeto many points and positive distances forthose who have few points nearby. In ef-fect, this forms a signed distance functionfor which the definition can be seen inequation 18. However, when there are nopoints present within the fixed search ra-dius, the function is undefined and thiscan cause problems.The function is defined at every gridcorner, which is why it makes sense toevaluate it for every grid corner. How-ever, this is highly inefficient as the timecomplexity for such an implementation isO(m ï¿½ n) where n is the number of pointsand m the number of grid corners. Foroptimization, we set the search radius Requal to three times the the grid spacing,the particle radius ri to half the grid spac-ing and iterate through the particles. Thismakes the influence of every point easy todetermine as it only can affect the cornerslocated within its proximity. The timecomplexity is thus reduced from O(m ï¿½ n)to O(n).Ï†(xg) = len(xg -âˆ‘
i
wixi)-âˆ‘
i
wiri (18)The points are weighted as shown inequation 19 using a well-shaped kernelfunction, shown in equation 20. The ker-nel function decays as the distance be-tween the point and the grid corner grows,being exactly zero at a distance equal tothe search radius, R. Every weight is nor-maliz http://www.nuokui.com/pdf/2sm6Mfr2lDrI.html ed with respect to all contributionsfrom nearby points. Implementing thisweighting functionality is therefore mosteffectively done by accumulating contribu-tions and their kernel values followed by afinal normalizing step.wi =k1(len(xg - xi)/R)
âˆ‘
j k1(len(xg - xj)/R)
(19)k1(s) = max(0,(1 - s2)3)(20)Since the kernel squares its input vari-able and the input always is the norm ofa vector, we replace this kernel with anoptimization, avoiding square roots. Theimproved kernel is shown in equation 22and the modified weight function in equa-tion 21. Note that the distance between xgand xi is calculated as the square distance,or dot product, which does not require asquare root operation.wi =k2((xg - xi) ï¿½ (xg - xi)/R2)
âˆ‘
j k2((xg - xj) ï¿½ (xg - xj)/R2)
(21)9
Page 11k2(s) = max(0,(1 - s)3)(22)3.4.2 Marching CubesA simple and elegant surface recon-struction algorithm was introduced byLorensen and Cline in [8]. The newmethod went under the name MarchingCubes and has since become the indus-try standard for iso-surface generation.The method is based on evaluating a real-valued function into a discrete scalar fielddefined on a regular grid. It should benoted that this grid is different from theone used during the simulation pass. Theyare not required to be of the same resolu-tion, yet it is implied that this grid shouldbe of a resolution determined by the den-sity of the tracker particles in the simula-tion. If eight particles are seeded per fluidcell, the optimal resolution for the surfacereconstruction grid will be that of the sim-ulation grid according to the Nyquist cri-terion.The first step of the method is to eval-uate the signed distance function for ev-ery cell corner in the grid. Since oursigned distance function is not defined ev-erywhere in the simulation domain, spe-cial consideration has to be made aboutwhere to evaluate the http://www.nuokui.com/pdf/2sm6Mfr2lDrI.html function. Cell cor-ners where the function is undefined isflagged as outside for the following stepsof the algorithm.Following the first step is to, given acertain iso-value, classify cell corners aseither inside or outside of the surface.Since we are using a signed distance func-tion which represents the signed distanceto the surface, the iso-value of interestis zero. Determining which cell cornersthat are outside thus corresponds to test-ing whether the value is greater than zeroand vice versa.Depending on how the corners areclassed as either inside or outside, a config-uration is formed for every cell. This con-figuration needs to be enumerated. Sincethere are eight corners of a cell, thereFigure 3: The corner and edge numberingcan be exactly 256 different combinations,each forming a unique case. The configu-ration is perfect for storage in a single un-signed byte which can be used as an indexinto a case table, detailing which trian-gles that form the surface. The notationshown in figure 3 is used to encode a onefor every corner that is flagged as inside.Figure 4: A unique caseFor cells where only corners 0 and 1are inside, the corresponding index will be00000011 where the least significant bit islocated to the right. This is equal to 3and thus case 3 is to be used from thetriangle case table. From the standardimplementation of Marching Cubes, thiscorresponds to placing two triangles. Onebetween vertices 3, 1 and 8 and one be-tween vertices 8, 1 and 9. This case is vis-ible in figure 4 which clearly shows that asurface is constructed which encapsulatescorners 0 and 1. The actual positions of10
Page 12the vertices are determined by interpolat-ing the scalar values located at the cor-ners as shown in equation 23 where Î± isthe blending factor between vertex i andvertex j.Î± =0 - Ï†iÏ†j - Ï†i(23)The original Marching Cubes algorithmalso details how the vertex n http://www.nuokui.com/pdf/2sm6Mfr2lDrI.html ormals canbe calculated from the values in the scalarfield. The gradient is simply evaluatedat every grid corner and interpolated tothe vertex positions. However, this is alsoproblematic as the function can be unde-fined outside of the surface. Instead sur-face normals are summed at the each ver-tex and finally normalized. As the vertexnormals are calculated from the topologyof the surface rather than from the gradi-ent of the scalar field, the resulting qualityof the vertex normals is lower. The twocalculation methods are not identical yetboth produce vertex normals of sufficientquality for our purposes.It should be noted that the originalMarching Cubes algorithm can create am-biguous cases for which the generated sur-face will have holes. The method used in[9] details how these cases can be foundand corrected properly.
3.5 Exporting meshes
During the surface reconstruction pass, avertex list, a vertex normal list and atriangle list is created. Vertices pend-ing addition to the vertex list are com-pared to the existing vertices. If theyare located within a small threshold value(10âˆ’5), the old vertex is reused and tri-angles are therefore able to share vertices.This reduces the number of vertices in themodel and can also be used to disable thecreation of the unwanted tiny stretchedtriangles, simply by raising the thresholdvalue. It should be noted that our im-plementation uses a brute force methodwhich has a time complexity of O(n) inwhich every new vertex is compared tothe already existing ones. An efficient im-plementation should make use of a datastructure to reduce the time complexityof this operation.From these lists, the surface must bestored in a highly accessible and standard-ized format. We chose the object file for-mat (.obj) from Alias Wavefront since itis text-based and easy to implement. Theformat is also compliant with the indexedface set data struct http://www.nuokui.com/pdf/2sm6Mfr2lDrI.html ure, which consists ofthe lists previously described.
4 Results
Our implementation was tested using fivedifferent test cases. Test cases one andtwo were designed to show how the viscos-ity of the simulated fluid can be changedsimply by altering the PIC influence fac-tor. All simulated cases are shown in ta-ble 1, where additional simulation data areshown in 2 in appending A.Case Description1Dam break (FLIP)2Dam break (PIC)3Dam break with dragon4Falling cube5Splashing dragonTable 1: List of simulation casesAll images shown below in appendix B,were rendered in Autodesk 3DSMAX us-ing simulation data from our implementa-tion. For each case, a set of 250 frameswere simulated, reconstructed and ren-dered.
5 Discussion
We have found that the use of hybridmethods as opposed to pure Eulerianmethods for fluid simulation allows forthe capture of highly detailed behavior inthe fluid. Our method is not limited bythe grid resolution since the fundamen-tal representation of the fluid is the setof particles. This allows us to perform11
Page 13simulations at a relatively low grid reso-lution while still producing detailed sur-faces, saving both time and memory. Ourmethod also captures the detail in splasheswith greater accuracy than Eulerian meth-ods.There is however a drawback to ourmethod; the surface reconstruction froma set of particles, e.g. a point cloud, isharder to perform than that of a levelset and the complexity of the generatedsurfaces create a larger number of poly-gons. The complexity of the surface canbe somewhat simplified by setting a limiton the number of particles that must bepresent in a voxel to generate a surface.This will however reduce the detail in finefeatures such as splashes and a trade-offmust be made between detail and com-plexity.Our implementation is able to performsimulations in a relatively short time evenas the numb http://www.nuokui.com/pdf/2sm6Mfr2lDrI.html er of particles increase. This ismainly due to clever data structures and amindfulness of how the cache memory andcaching works. As table 2 clearly shows,the bulk of the time it takes to producea frame is spent on rendering and sur-face reconstruction. We have noted thatas the complexity of our simulation dataincreases, e.g. when large splashes occur,the reconstruction phase takes longer andproduces more complex geometry with alarger amount of polygons. This is some-thing which we plan to remedy and a pos-sible solution is mentioned in the next sec-tion.
6 Improvements & futurework
A major area of improvement in our im-plementation is the surface generation. Afirst step would be to change the way inwhich a particle may influence the gridpoints. In the current implementation,a particle influences grid points within asphere of a certain radius from its location.This sphere-of-influence could be changedinto a more elliptical shape with an ori-entation and size based on the local par-ticle density. The most crucial improve-ment this would yield is the ability to de-fine sharper features in the surface. Asit stands today, extremely sharp featuresare smoothed out because of the sphericalshape of influence from a particle. This isdescribed in more detail in [10].We would also like to introduce post-processing operations on the generatedsurfaces, mainly to reduce the number ofunnecessary polygons and by doing so de-creasing the rendering time. Amongst theoperations we would like to implement are;Mesh-smoothing to reduce noise-like be-havior which may be introduced by lowlocal particle density.Decimation simply to reduce the num-ber of polygons. We believe that meshdecimation based on polygon area andcurvature would be very effective in reduc-ing the amount of polygons whilst preserv-ing the fine detail in the mesh.As for the simulation part of our im-plementation, we wou http://www.nuokui.com/pdf/2sm6Mfr2lDrI.html ld like to introduceseeding of foam particles at voxels wherethe magnitude of the curl is above a cer-tain threshold to emphasize the wild be-havior of the fluid. We would also like tointroduce a two-way coupling in our sim-ulator, meaning that the fluid may inter-act with solid objects, or other fluids, ina more complex way, e.g. having floatingsolid objects or blending of oil and water.We would also like to improve the gridstructure so that we can represent solidobjects which have a slope in a correctway. Using the existing structure to dothis would result in a staircase-like behav-ior as a result of the voxel representation.Bridson has suggested a way of achievingthis in [1].Finally we have considered implement-ing an adaptive grid structure. In thisstructure, the grid would only be definedin the close vicinity to where the fluid ac-tually is and it would follow the fluid as itmoves. We believe that this would reduce12
Page 14the simulation time significantly.
References
[1] R. Bridson, Fluid Simulation forComputer Graphics.A K Pe-ters/CRC Press, Sept. 2008.[2] N. Foster and D. Metaxas, â€œRealis-tic animation of liquids,â€� in Graph-ical Models and Image Processing,pp. 23â€“30, 1995.[3] Y. Zhu and R. Bridson, â€œAnimatingsand as a fluid,â€� in ACM SIGGRAPH2005 Papers, SIGGRAPH â€™05, (NewYork, NY, USA), pp. 965â€“972, ACM,2005.[4] J. Stam, â€œStable fluids,â€� in Pro-ceedings of the 26th annual confer-ence on Computer graphics and in-teractive techniques, SIGGRAPH â€™99,(New York, NY, USA), pp. 121â€“128,ACM Press/Addison-Wesley Pub-lishing Co., 1999.[5] N. Foster and R. Fedkiw, â€œPracti-cal animation of liquids,â€� in Pro-ceedings of the 28th annual confer-ence on Computer graphics and in-teractive techniques, SIGGRAPH â€™01,(New York, NY, USA), pp. 23â€“30,ACM, 2001.[6] M. Evans and F. Harlow, Theparticle-in-cell method for hydrody-namics calculations. LA-2139, 1957.[http://www.nuokui.com/pdf/2sm6Mfr2lDrI.html 7] J. Brackbill and H. Ruppel, â€œFLIP:A method for adaptively zoned,particle-in-cell calculations of fluidflows in two dimensions,â€� Journalof Computational Physics, vol. 65,pp. 314â€“343, Aug. 1986.[8] W. E. Lorensen and H. E. Cline,â€œMarching cubes: A high resolution3d surface construction algorithm,â€�SIGGRAPHComput.Graph.,vol. 21, pp. 163â€“169, August 1987.[9] T. S. Newman and H. Yi, â€œAsurvey of the marching cubes al-13
Page 15gorithm,â€� Computers & Graphics,vol. 30, pp. 854â€“879, Oct. 2006.[10] J. Yu and G. Turk, â€œReconstructingsurfaces of particle-based fluidsusinganisotropic kernels,â€�inProceedings of the 2010 ACM SIG-GRAPH/Eurographics Symposiumon Computer Animation, SCA â€™10,(Aire-la-Ville, Switzerland, Switzer-land), pp. 217â€“225, EurographicsAssociation, 2010.
Page 16A Benchmarks
12345Simulation grid128x64x64 128x64x64 128x64x64 128x64x128 128x64x64Particle density2323232343Particles917 600917 600595 200438 976402 880PIC influence5%45%5%5%5%Simulation34 min18 min25 min8 min7 minReconstruction82 min64 min71 min155 min36 minRendering483 min396 min310 min926 min366 minSimulation data2.56 GB2.56GB1.66 GB1.22 GB1.12 GBSurface data820 MB709 MB829 MB1.34 GB572 MBTable 2: Benchmark data for all simulation cases
B Images
Figure 5: Dam break (FLIP)
Page 17Figure 6: Dam break (PIC)Figure 7: Dam break with dragon
Page 18Figure 8: Falling cubeFigure 9: Splashing dragon

Free Document Search Engine. support all pdf,DOC,PPT,RTF,XLS,TXT,Ebook! Free download! You can search all kind of documents!
http://www.downhi.com/

