Free Document Search and Download
http://www.downhi.com/
　　
Multi-CPU performance in PostgreSQL 9.2 Heikki Linnakangas / EnterpriseDB
：
http://www.nuokui.com/pdf/29Y1SEa6GpTI.html

Page 1Multi-CPU performance in PostgreSQL 9.2Heikki Linnakangas / EnterpriseDB
Page 2Scalability 101
â—� Scalability defined:â—� when you throw more hardware at a problem,
the software can make use of it
â—� This presentation focuses on multi-CPU
scalability
Page 3Multi-CPU systems today
â—� Even laptops typically have 2 coresâ—� Servers
â—� Low-end: 4 coresâ—� High-end: 32 cores and beyond
â—� RAM:
â—� > 128 GB
Page 4Journey begins: Itanium test box
machinfoCPU info:8 Intel(R) Itanium(R) Processor 9350s (1.73 GHz, 24 MB)4.79 GT/s QPI, CPU version E032 logical processors (4 per socket)Memory: 392917 MB (383.71 GB)...Platform info:Model: "ia64 hp Integrity BL890c i2"
Page 5Making software to scale
1. Benchmark2. Identify bottleneck3. Fix bottlenck
Page 6Choosing the benchmark
â—� There are workloads where PostgreSQL scales
great
â—� SELECTs, bundled into large transactionsâ—� > 64 CPUs, no problem!
â—� On other workloads, PostgreSQL scales poorly
â—� Concurrent inserts choke at 2 CPUs
Page 7COPY
â—� Bulk loading data with COPY has always
scaled well
â—� unless it needs to be WAL-logged
â€“ Which is most of the time
Page 8COPY, solved
commit d326d9e8ea1d690cf6d968000efaa5121206d231Author: Heikki Linnakangas <heikki.linnakangas@iki.fi>Date: Wed Nov 9 10:54:41 2011 0200In COPY, insert tuples to the heap in batches.This greatly reduces the WAL volume, especially when the table is narrow.The overhead of locking the heap page is also reduced. Reduced WALtraffic also makes it scale a lot better, if you run multiple COPY processes atthe same time.
Page 9Page 10Impact
â—� Makes bulk loading scaleâ—� Reduces WAL volumeâ—� Caveats:
â—� Optimization does not apply if there are
BEFORE/AFTER triggers or volatile DEFAULTexpressions
â—� When loading into a single http://www.nuokui.com/pdf/29Y1SEa6GpTI.html table, extending the file
becomes bottleneck
Page 11Next workload: SELECTs
â—� I said SELECTs already scale well
â—� But in 9.1, only if you SELECTed different tablesâ—� PostgreSQL lock manager is partitionedâ—� But when all backends hit the same table, that
doesn't help, and the lock manager became abottleneck
Page 12Lock manager, solved
commit 3cba8999b343648c4c528432ab3d51400194e93bAuthor: Robert Haas <rhaas@postgresql.org>Date: Sat May 28 19:52:00 2011 -0400Create a "fast path" for acquiring weak relation locks.When an AccessShareLock, RowShareLock, or RowExclusiveLock is requestedon an unshared database relation, and we can verify that no conflictinglocks can possibly be present, record the lock in a per-backend queue,stored within the PGPROC, rather than in the primary lock table. Thiseliminates a great deal of contention on the lock manager LWLocks....Review by Jeff Davis.
Page 13Impact
â€�Here are the results of alternating runs withoutand with the patch on that machine:tps = 36291.996228 (including connections establishing)tps = 129242.054578 (including connections establishing)tps = 36704.393055 (including connections establishing)tps = 128998.648106 (including connections establishing)tps = 36531.208898 (including connections establishing)tps = 131341.367344 (including connections establishing)That's an improvement of about ~3.5x. According to the vmstat output,when running without the patch, the CPU state was about 40% idle.With the patch, it dropped down to around 6%.- Robert Haas, 3 Jun 2011
Page 14Page 15SELECTs continued: ProcArrayLock
â—� Each session has an entry in shared memory,
in the â€�proc arrayâ€�
â—� The proc array is protected by a lock called
ProcArrayLock
â—� It is acquired in shared mode whenever a
snapshot is taken (~= at the beginning of eachtransaction)
â—� It i http://www.nuokui.com/pdf/29Y1SEa6GpTI.html s acquired in exclusive mode whenever a
transaction commits
Page 16ProcArrayLock
â—� Becomes a bottleneck at high transaction rates
â—� A problem with OLTP workloads with a lot of small
transactions
â—� Not a problem with larger transactions that do more
stuff per transaction
Page 17commit b4fbe392f8ff6ff1a66b488eb7197eef9e1770a4Author: Robert Haas <rhaas@postgresql.org>Date: Fri Jul 29 16:46:13 2011 -0400Reduce sinval synchronization overhead.Testing shows that the overhead of acquiring and releasingSInvalReadLock and msgNumLock on high-core count boxes can waste a lotof CPU time and hurt performance. This patch adds a per-backend flagthat allows us to skip all that locking in most cases. Furthertesting shows that this improves performance even when sinval trafficis very high.Patch by me. Review and testing by Noah Misch.
Page 18commit 84e37126770dd6de903dad88ce150a49b63b5ef9Author: Robert Haas <rhaas@postgresql.org>Date: Thu Aug 4 12:38:33 2011 -0400Create VXID locks "lazily" in the main lock table.Instead of entering them on transaction startup, we materialize themonly when someone wants to wait, which will occur only during CREATEINDEX CONCURRENTLY. In Hot Standby mode, the startup process must alsobe able to probe for conflicting VXID locks, but the lock need never befully materialized, because the startup process does not use the normallock wait mechanism. Since most VXID locks never need to touch thelock manager partition locks, this can significantly reduce blockingcontention on read-heavy workloads.Patch by me. Review by Jeff Davis.
Page 19spinlocks
commit c01c25fbe525869fa81237954727e1eb4b7d4a14Author: Robert Haas <rhaas@postgresql.org>Date: Mon Aug 29 10:05:48 2011 -0400Improve spinlock performance for HP-UX, ia64, non-gcc.At least on this architecture, it's very important to spin on anon-atomic http://www.nuokui.com/pdf/29Y1SEa6GpTI.html instruction and only retry the atomic once it appearsthat it will succeed. To fix this, split TAS() into two macros:TAS(), for trying to grab the lock the first time, and TAS_SPIN(),for spinning until we get it. TAS_SPIN() defaults to same as TAS(),but we can override it when we know there's a better way.It's likely that some of the other cases in s_lock.h requiresimilar treatment, but this is the only one we've got conclusiveevidence for at present.
Page 20commit ed0b409d22346b1b027a4c2099ca66984d94b6ddAuthor: Robert Haas <rhaas@postgresql.org>Date: Fri Nov 25 08:02:10 2011 -0500Move "hot" members of PGPROC into a separate PGXACT array.This speeds up snapshot-taking and reduces ProcArrayLock contention.Also, the PGPROC (and PGXACT) structures used by two-phase commit arenow allocated as part of the main array, rather than in a separatearray, and we keep ProcArray sorted in pointer order. These changesare intended to minimize the number of cache lines that must be pulledin to take a snapshot, and testing shows a substantial increase inperformance on both read and write workloads at high concurrencies.Pavan Deolasee, Heikki Linnakangas, Robert Haas
Page 21commit 0d76b60db4684d3487223b003833828fe9655fe2Author: Robert Haas <rhaas@postgresql.org>Date: Fri Dec 16 21:44:26 2011 -0500Various micro-optimizations for GetSnapshopData().Heikki Linnakangas had the idea of rearranging GetSnapshotData toavoid checking for sub-XIDs when no top-level XID is present. Thispatch does that plus further a bit of further, related rearrangement.Benchmarking show a significant improvement on unlogged tables athigher concurrency levels, and mostly indifferent result on permanenttables (which are presumably bottlenecked elsewhere). Most of thebenefit seems to come from using the new NormalTransactionIdPrecedes()macro rather than the function call TransactionIdPrecedes().
Page 22 http://www.nuokui.com/pdf/29Y1SEa6GpTI.html commit d573e239f03506920938bf0be56c868d9c3416daAuthor: Robert Haas <rhaas@postgresql.org>Date: Wed Dec 21 09:16:55 2011 -0500Take fewer snapshots.When a PORTAL_ONE_SELECT query is executed, we can opportunisticallyreuse the parse/plan shot for the execution phase. This cuts down thenumber of snapshots per simple query from 2 to 1 for the simpleprotocol, and 3 to 2 for the extended protocol. Since we are onlyreusing a snapshot taken early in the processing of the same protocolmessage, the change shouldn't be user-visible, except that the remotepossibility of the planning and execution snapshots being different iseliminated....Patch by me; review by Dimitri Fontaine.
Page 23Page 24Next bottleneck
â€�So I have a new theory: on permanenttables, *anything* that reduces ProcArrayLockcontention causes an approximately equalincrease in WALInsertLock contention (or maybesome other lock), and in some cases thatincrease in contention elsewhere can cost morethan the amount we're saving here.â€�- Robert Haas, 15 Dec 2011
Page 25Next workload: read/write
â—� Reran pgbench, now with writes
â—� Excluding branch-table updates, to avoid
bottlenecking on the application level
Page 26Page 27WALInsertLock
â—� Remember the COPY problem?â—� The patch to solve that was a special hack
targeting just COPY.
â—� The problem remains for all other
inserts/updates/deletes
Page 28Page 29Page 30Profiling
â—� HP-UX has a nice tool called caliperâ—� Like oprofile, but can include wait times too
ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½34.62ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½postgres::ProcArrayEndTransactionï¿½[51]ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½30.77ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½postgres::XLogInsertï¿½[49]ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½11.54ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½postgres::LockBufferï¿½[113]ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½7.69ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½postgres::TransactionIdSetPageStatusï¿½[146]ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½7.69ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½postgres::BufferAllocï¿½[72]ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½7.69ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½postgres::GetS http://www.nuokui.com/pdf/29Y1SEa6GpTI.html napshotDataï¿½[246][25]ï¿½ï¿½ï¿½ï¿½13.6ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½1.1ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½12.5ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½3.85ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½postgres::LWLockAcquireï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½69.23ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½postgres::PGSemaphoreLockï¿½[38]ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½26.92ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½postgres::s_lockï¿½[60]
Page 31Summary
â—� 9.2 scales much better for many common
workloads!
â—� Future focus
â—� Serializable transactionsâ—� WAL-logging
â—� Thanks to
â—� Nathan boley, for lending a server for benchmarkingâ—� Greg Smith, for creating pgbench-tools

Free Document Search Engine. support all pdf,DOC,PPT,RTF,XLS,TXT,Ebook! Free download! You can search all kind of documents!
http://www.downhi.com/

