Home > INTRUSION DETECTION INTRUSION DETECTION INTRUSION DETECTION INTRUSION DETECTION INTRUSION DETECTION INTRUSION DETECTION INTRUSION DETECTION INTRUSION

INTRUSION DETECTION INTRUSION DETECTION INTRUSION DETECTION INTRUSION DETECTION INTRUSION DETECTION INTRUSION DETECTION INTRUSION DETECTION INTRUSION


INTRUSION   DETECTION INTRUSION   DETECTION INTRUSION  
                                       DETECTION 
  INTRUSION DETECTION 
                     INTRUSION DETECTION 
       INTRUSION DETECTION 
                    INTRUSION DETECTION 
   INTRUSION           DETECTION 
                    DETECTION 
INTRUSION              DETECTION 
INTRUSION  DETECTION INTRUSION 
                             DETECTION 
                   INTRUSION     DETECTION 
INTRUSION DETECTION 
INTRUSION           DETECTION 
             INTRUSION         DETECTION 
INTRUSION   DETECTION INTRUSION   DETECTION INTRUSION  
                                       DETECTION 
  INTRUSION DETECTION 
                     INTRUSION DETECTION 
       INTRUSION DETECTION 
                    INTRUSION DETECTION 
   INTRUSION           DETECTION 
                    DETECTION 
INTRUSION              DETECTION 
INTRUSION  DETECTION INTRUSION 
                             DETECTION  
INTRUSION         DETECTION


  • Anomaly Detection
  • Misuse Detection 
     
 
 

 
A  
presentation over term paper 
on 
intrusion detection 
 
 
by 
anuja jain 
(MS  in computer science) 
monica achury 
(MS in computer science) 


Definition 

INTRUSION

- The potential possibility of a deliberate unauthorized attempt to:

  • Access information
  • Manipulate information
  • Render a system unreliable or unusable
 

INTRUSION DETECTION

- The process of identifying and responding to intrusion activities

 


Types of Intrusion 

There are six types of Intrusions 

  • Attempted break-ins
  • Masquerade attacks 
  • Penetration of the security control system 
  • Leakage 
  • Denial of service 
  • Malicious use 

 


  • Anomaly Detection
      • Static
      • Dynamic 
  • Misuse Detection 

      Ex:- NIDES, MIDAS, STAT 

Intrusion Detection Techniques


  • Statistical approaches
      • Tripwire, Self/Non-self
  • Dynamic /Predictive pattern generation 
            • NIDES, Pattern Matching (UNM)
 
 
 

Anomaly Detection Systems


Anomaly Detection 

activity measures 

probable intrusion 

Relatively high false positive rate -     anomalies can just be new normal activities.


Misuse Detection Systems 

  • Expert Systems
  • Keystroke Monitoring 
  • Model Based Intrusion Detection 

 


Misuse Detection 

Intrusion Patterns 

activities 

pattern matching 

intrusion 

Can��t detect new attacks 

Example: if (src_ip == dst_ip) then ��land attack��


IDS Design


Components of IDS 

  Audit Data Preprocessor 

Audit Records 

Activity Data 

Detection

  Models 

Detection Engine 

Alarms 

Decision

  Table 

Decision Engine 

Action/Report 

system activities are observable 

normal and intrusive

 activities have distinct evidence


Important Features 

  • Fault tolerant.
  • Minimum human supervision. 
  • Resist subversion. 
  • Minimal Overhead. 
  • Platform Independent 
 

Continued��


  • Adaptable.
  • Easy to Deploy. 
  • Detect different types of attacks. 
      • Anomaly detection schemes
      • Misuse detection schemes
      • Combination of both
  • Hardware / Software must be synchronized. 
  • Good data mining techniques   

 


Data Mining 

Definition:  The semi-automatic discovery  of patterns, associations, changes, anomalies, rules, and statically significant structures and events in data. 

Data such as,

  • Failed connection attempts
  • Connection delays
  • Source/Destination data packets

 


Data Mining Algorithms 

Extract knowledge in the form of models

from data. 

      • Classification
      • Regression
      • Clustering
      • Association rule abduction
      • Sequence Analysis
      • Others

 


Data Mining Techniques 

It allows the system to collect useful knowledge that describes a user��s or program��s behavior from large audit data sets.

Examples:

  • Statistics
  • Artificial Neural Network
  • Rule Learning
  • Neuro-Fuzzy

 


IDS Evaluation 

  • Rate of false positives
  • Attack detection rate 
  • Maintenance cost 
  • Total cost 

 


IDS for Mobile Wireless Systems


Designing for Wireless Networks 
 

Problems with Wireless Networks 

  • Open Medium
  • Dynamic changing network topology 
  • Lack of decentralized monitoring 
  • Less known security measures 
  • Data is harder to collect 

 


One proposed IDS design by Georgia Institute of Technology 

  • Individual IDS agents are placed on each an every node.
      •   Monitors local activities
        • User, system and communication activities
  • Nodes cooperate with each other. 
      • Investigate together at a broader range
  • A secure communication channel among the IDS Agent. 

 


references 

  • Chebrolu, S., Abraham, A., Thomas, J.P.: Feature Detection and Ensemble Design of Intrusion Detection Systems. Computers and security, http://dx.doi.org/10.1016/j.cose.2004.09.008
  • Zhang, Y., Lee, W., and Huang, Y. 2003. Intrusion detection techniques for mobile wireless networks. Wirel. Netw. 9, 5 (Sep. 2003), 545-556. DOI= http://dx.doi.org/10.1023/A:1024600519144
  • J.P Anderson. Computer Security Threat Monitoring and Surveillance. Technical report, James P Anderson Co., Fort Washington, Pennsylvania, April 1980
  • Eugene H Spafford. Security Seminar, Department of Computer Sciences, Purdue University, Jan 1996.
  • Biswanath Mukherjee, L Todd Heberlein and Karl N Levitt. Network Intrusion Detection , IEEE Network, May/June 1994, pages 26-41.

 


Questions???


Set Home | Add to Favorites

All Rights Reserved Powered by Free Document Search and Download

Copyright © 2011
This site does not host pdf,doc,ppt,xls,rtf,txt files all document are the property of their respective owners. complaint#nuokui.com
TOP