Home > Mountain Region - Arizona Engineering Capabilities
1
ASU
MAT 591: Opportunities in Industry!
ASU MAT
591: Opportunities In Industry!
Subject: On-board Processing
By
Eric Smith
Lockheed Martin- Management and Data Systems
2
ASU
MAT 591: Opportunities in Industry!
Presentation
Overview
3
ASU
MAT 591: Opportunities in Industry!
GFLOPS in Space!
OBP Goal:
> 100 GFLOPS
< 1 KW
< 100 KG
Space-based Radar Notional Satellite
4
ASU
MAT 591: Opportunities in Industry!
BACKGROUND
5
ASU
MAT 591: Opportunities in Industry!
The need for imaging
satellites capable of continuous coverage and real-time output products
require high performance on-board processing
Why On-Board
Processing?
6
ASU
MAT 591: Opportunities in Industry!
OBP Applications
7
ASU
MAT 591: Opportunities in Industry!
Example SAR Imagery
8
ASU
MAT 591: Opportunities in Industry!
Example SAR Imagery
9
ASU
MAT 591: Opportunities in Industry!
OBP Applications
Moving Target Indicator
10
ASU
MAT 591: Opportunities in Industry!
Architecture Overview
11
ASU
MAT 591: Opportunities in Industry!
Factors Driving
an OBP Architecture
Algorithm/Application Requirements
Environment
SV Constraints
Risk Factors
Mission Life
Life Cycle Cost
OBP
Architecture
12
ASU
MAT 591: Opportunities in Industry!
OBP
Architecture
MUX Mod
Processing
Element #1
Processing
Element #n
MUX
Fabric
NVMS
Control Proc
NVMS
Control Proc
cPCI
Bus Computer
UART
LLP
LLP
LLP
Output
Formatter
LLP
MEM Slice #1
MEM Slice #n
LLP
LLP
From
Sensor
To Comm(s)
Mass
Data Storage
Network Fabric
PE��s and Control Proc��s
13
ASU
MAT 591: Opportunities in Industry!
OBP Architectural
Concepts
14
ASU
MAT 591: Opportunities in Industry!
Representative
Performance Requirements
15
ASU
MAT 591: Opportunities in Industry!
H/W Architectures
16
ASU
MAT 591: Opportunities in Industry!
Approach
Continuum of Computational Alternatives
Performance
Flexibility
ASPs
GP
Microprocessors
PowerPC, x86
LSP, LSP-II
FPGA
Commercial
DSP
TI, Analog Device, TriMedia
Xilinx, Atmel
robust set of commercially supported
tools
homegrown/custom tools required
Full Custom
LL beamformer
17
ASU
MAT 591: Opportunities in Industry!
FLOP/Watt Performance
Comparison
Peak MFlops (MOp) /Watt for large
FFT in 2002
GP + FPGA
390
GP + LSPII
425
Comm
PPC G4
118
Rad
PPC 750
7
Near Future
1430
1
10
100
1000
SBR LEO Threshold
GP + FPGA/RCC
120
Wideband Processing
Maxwell
SCS750
23
Narrowband/General Purpose Processing
18
ASU
MAT 591: Opportunities in Industry!
Processing
Element Trade Data
Fixed point
MF/W at the
chip level
based on a
256K FFT
Power at the
chip level
Estimate
19
ASU
MAT 591: Opportunities in Industry!
Background:
FPGA
20
ASU
MAT 591: Opportunities in Industry!
Example FPGA:
Xilinx Vertex-II
Conf
Logic
Block
Frames
(CLB)
BRAM0
BRAM1
21
ASU
MAT 591: Opportunities in Industry!
Features of
processing
22
ASU
MAT 591: Opportunities in Industry!
Approach based
on heritage systems
Enhanced Parallel Vector Supercomputer
Enhanced MPP Supercomputer
23
ASU
MAT 591: Opportunities in Industry!
Reconfigurable
Computing Paradigm
24
ASU
MAT 591: Opportunities in Industry!
Processing
Element
25
ASU
MAT 591: Opportunities in Industry!
Processing
Element Module (PEM)
Acronyms
RHBD Rad-hard by design
TMR Triple modular redundancy
PE 3
Xilinx
XC2V6000
150MHz
QDR SRAM
256Kx72
.9 watts: 1 chip
7.5 Gflops
11.6 watts
650 Mflop/w
PortA
Config/
SEU
110
BufD
PortB
PortC
110
110
QDR SRAM
256Kx72
.9 watts: 1 chip
QDR SRAM
256Kx72
.9 watts: 1 chip
QDR SRAM
256Kx72
.9 watts: 1 chip
110
BufC
110
BufA
110
BufB
PE 2
Xilinx
XC2V6000
150MHz
QDR SRAM
256Kx72
.9 watts: 1 chip
7.5 Gflops
11.6 watts
650 Mflop/w
PortA
Config/
SEU
110
BufD
PortB
PortC
110
110
QDR SRAM
256Kx72
.9 watts: 1 chip
QDR SRAM
256Kx72
.9 watts: 1 chip
QDR SRAM
256Kx72
.9 watts: 1 chip
110
BufC
110
BufA
110
BufB
PE 1
Xilinx
XC2V6000
150MHz
QDR SRAM
256Kx72
.9 watts: 1 chip
7.5 Gflops
11.6 watts
650 Mflop/w
PortA
Config/
SEU
110
BufD
PortB
PortC
110
110
QDR SRAM
256Kx72
.9 watts: 1 chip
QDR SRAM
256Kx72
.9 watts: 1 chip
QDR SRAM
256Kx72
.9 watts: 1 chip
110
BufC
110
BufA
110
BufB
Interface
/ TMR Supervisor
(Actel RTAX2000S)
40
RapidIO
(8-bit)
DATA STORAGE
DDR SDRAM
1 GBYTE
12 Watts : 16 chip
115
22.5 Gigaflops
51.8 watts (peak)
367 Mflops/watt
40
10
40
10
40
10
POWER CONVERTER
70% efficient
(22.2 Watts dissipated @ 51.8
Watt load)
I/O=
345
Power= 5 watts
40
RapidIO
(8-bit)
26
ASU
MAT 591: Opportunities in Industry!
RCC Implementation
Styles
27
ASU
MAT 591: Opportunities in Industry!
Example RCC
Styles
Micro-coded FMG
Optimized Primitives
28
ASU
MAT 591: Opportunities in Industry!
H/W Abstraction
Layer
29
ASU
MAT 591: Opportunities in Industry!
H/W Abstraction
Layer
ACF
ACF
ACF
ACF
Algorithm Partition Area
(algorithm partitions
go here)
External I/F
QDR
Memory
QDR
Memory
QDR
Memory
QDR
Memory
To/From Control FPGA
Fixed IP
GP Controller
30
ASU
MAT 591: Opportunities in Industry!
GP Controller
MicroBlaze 32-bit RISC Core
31
ASU
MAT 591: Opportunities in Industry!
FMG Approach
32
ASU
MAT 591: Opportunities in Industry!
Generic FM
Architecture Description
Local Memory
Data Path
Configuration Registers
Initialization &
Control
Static & Dynamic
control
Status
Initialization
Data In
Data Out
Condition
Codes
FMG
Microcode SM
33
ASU
MAT 591: Opportunities in Industry!
Optimized Primitive:
Radix-2 FFT
Add
Add
Add
Add
Add
Add
Mpy
Mpy
Mpy
Mpy
Dly
Out
In
Dly
Fold
Part: XC2V6000-5FF1152
Part Utilization: 10% (overall)
Circumscribed Area Utilization: 20%
Flip flops = 11%
LUTs = 7%
Slices = 15%
BRAMs = 6%
18x18 Mpy = 11%
Power = 2.4 watts
Speed (-5) = 5.824 ns
= 171 MHz
QDR_BankA
QDR_BankB
Read Address
Generator
Timing &
Control
Write Address
Generator
Half Butterfly
Output Multiplexer
Half Butterfly
Twiddle Generator
34
ASU
MAT 591: Opportunities in Industry!
FFT Logic Placement
Comparison
QDR_BankA
QDR_BankB
Read Address
Generator
Timing &
Control
Write Address
Generator
Add
Add
Add
Add
Add
Add
Mpy
Mpy
Mpy
Mpy
Dly
Out
In
Dly
Twiddle
Generator
Output
Multiplexer
Half
Butterfly
Fold
Half
Butterfly
Manual placement
Automatic placement
Manual placement results in better overall device utilization, increased performance, and is more conducive to re-use
35
ASU
MAT 591: Opportunities in Industry!
Algorithm Implementation Process
36
ASU
MAT 591: Opportunities in Industry!
Example Processing
Dataflow
E
S
A
Multi-Channel
Receiver
Offset
A-to-D Converters
Filter
RF Subbands
Delay
and Equalize ESA Ch.s
Form 4
GMTI
Beams
FEP: ��Front End�� Processing
MDS
Convert
Fast Time to Frequency
Correct
Subbands
Resample
Polar VPH
Compress
Subbands to Range
Turn
Range to Slow Time
Compress
to Azimuth
Background
Sampling
Multi_Algo
Weights Calculations
Suppress
Clutter / Filter Velocities
Turn
Azimuth to Range
Combine
Subbands
Compress
Full - BW Pulses
Multi_Algo
Detectors & CFARs
Multi-Algo
NCI /
CPI Combiners
Target
Reports
OBP: ��Back End�� Processing
37
ASU
MAT 591: Opportunities in Industry!
Decomposition
to primitives
Convert
Fast Time to Frequency
Correct
Subbands
Compress
to Azimuth
Background
Sampling
Multi_Algo
Weights Calculations
Suppress
Clutter / Filter Velocities
Turn
Azimuth to Range
Combine
Subbands
Compress
Full - BW Pulses
Multi_Algo
Detectors & CFARs
Multi-Algo
NCI /
CPI Combiners
Target
Reports
Resample
Polar VPH
Compress
Subbands to Range
Turn
Range to Slow Time
S
S
38
ASU
MAT 591: Opportunities in Industry!
Algorithm Components
Chain: Sequence of Primitives-
Programmed in HOL (��C��)
Primitive: A signal processing
function (kernel) on the scale of a complete FFT or vector filtering
function
Examples:
c
c
RFG
Reference Function
Generator
Complex Multiply
FFT
Fast
Fourier
Transform
Perform FFT on Signal
Vector
IPF
In-Plane
Filter
Filter the Complex
Signal
SQRT
Square Root
Take the Square Root
of Real-valued samples
39
ASU
MAT 591: Opportunities in Industry!
Components
of a Primitive
RISC Controller
HAL
API
FMG
FMG
Configuration Registers
Microcode SM
Data Path
Configuration Registers
Device
Device
Device
e.g. Vsma(v1, d1, x, v2, d2, d3,
cnt)
void Vsma(V *v1, int d1, double x,
V *v2, int d2,
V *v3, int d3, int cnt)
{
// Init Address Generators
*adr_src1_strt= v1;
*adr_src1_inc= d1;
*adr_src2_strt= v2;
*adr_src2_inc= d2;
// Init FMG
*fmg_c1= x;
*mc_adr= Vsma;
*mc_start= go;
}
40
ASU
MAT 591: Opportunities in Industry!
Primitive Development
Process
41
ASU
MAT 591: Opportunities in Industry!
Implementation
Flow
Primitive Development
Algorithm Prototyping &
Implementation
Faster,
Harder,
more results��.
Primitive Library Development
(Off-Line)
Algorithm Development
Specification
Functional Prototype
API
Primitive
42
ASU
MAT 591: Opportunities in Industry!
Chain Development
c
r
DFC
Deskew Phase
Change
FFT1
RFG2A
RFG2B
FFT2
Range Ripple
Correction
c
c
Data Format
-1
+1
Synthetic Target
Phase History
Generator
Emulation executed on the workstation
43
ASU
MAT 591: Opportunities in Industry!
Development
Testbench
PEM
Testbench
Stimulus Data /Operating
Parameters
Configuration Bit
Streams
Results
44
ASU
MAT 591: Opportunities in Industry!
Issues related to OBP
45
ASU
MAT 591: Opportunities in Industry!
Issues: Radiation
46
ASU
MAT 591: Opportunities in Industry!
Radiation Environment
Example Equatorial
Orbit,5 Years, No SAA
Orbital Altitude (1000
kilometers)
1
10
100
1000
10,000
krads
1
2
3
4
5
6
7
8
9
10
Commercial Component
Radiation Range
47
ASU
MAT 591: Opportunities in Industry!
Latch-up
*Digital Integrated Circuits, by Jan M. Rabaey, Prentice Hall ��95
48
ASU
MAT 591: Opportunities in Industry!
Raw Unmitigated
2V6000 Upset Rates
49
ASU
MAT 591: Opportunities in Industry!
Raw 2V6000
Upset Rates
50
ASU
MAT 591: Opportunities in Industry!
Mitigated Upset
Rate
51
ASU
MAT 591: Opportunities in Industry!
Approaches
to SEU Mitigation
52
ASU
MAT 591: Opportunities in Industry!
Other Approaches
to SEU Mitigation
FFT
F()
f(t)
Parseval��s Theorem:
53
ASU
MAT 591: Opportunities in Industry!
Issues: Mission
Success
54
ASU
MAT 591: Opportunities in Industry!
Fault-tolerance
Cross-strapping
N+m
55
ASU
MAT 591: Opportunities in Industry!
In-flight changes
Incorporate
Modification
Data or
Code +
Config File
Uplink
Test and
Integration
Change
Analysis and
Correction
Change
Detection
OK
OK
Failure
OBP
OBP
Self
Test
Config
File
Uplink
Test
Collection and
Processing
TES
Support
Facility
EDU
Support
Facility
The process being used on an operational ground based system is directly applicable to the SBR program
56
ASU
MAT 591: Opportunities in Industry!
Future Generation OBP
57
ASU
MAT 591: Opportunities in Industry!
MEO Notional
Design
MEO SBR concept requires designers to re-think their approach: distributed processor architecture
58
ASU
MAT 591: Opportunities in Industry!
Architectural
Concept
Enhanced fault-tolerance
SM
P
P
Versatile Processing
Element (VPE)
DSP
Engine
f1
DSP
Engine
f2
DSP
Engine
f3
LM
LM
Sensor Input
100m
P
VPE
N/W I/F
PPC405
SM Ctl
Combination of DSP engine hard macrocell
and FPGA enable overall algorithm optimization
Network of distributed processing
elements reduces cost and improves fault-tolerance
NIC
OCC
All Rights Reserved Powered by Free Document Search and Download
Copyright © 2011