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Abstract

The applications of texture mapping in computer graphics and image distortion (warping) in image
processing share a core of fundamental techniques. We explore two of these techniques, the two-
dimensional geometric mappings that arise in the parameterization and projection of textures onto
surfaces, and the filters necessary to eliminate aliasing when an image is resampled during texture
mapping or warping. With respect to mappings, this work presents a tutorial on three common
classes of mapping: the affine, bilinear, and projective. For resampling, this work develops a new
theory describing the ideal, space variant antialiasing filter for signals warped and resampled ac-
cording to an arbitrary mapping. Efficient implementations of the mapping and filtering techniques
are discussed and demonstrated.
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Chapter 1

Introduction

In this thesis, we are interested in the modeling and rendering problems common to texture mapping
and image warping. We begin by reviewing the goals and applications of texture mapping and image
warping.

1.1 Texture Mapping

Texture mapping is a shading technique for image synthesis in which a texture image is mapped onto
a surface in a three dimensional scene, much as wallpaper is applied to a wall [Catmull74], [Blinn-
Newell76], [Heckbert86b]. If we were modeling a table, for example, we might use a rectangular
box for the table top, and four cylinders for the legs. Unadorned, this table model would look quite
dull when rendered. The realism of the rendered image can be enhanced immensely by mapping a
wood grain pattern onto the table top, using the values in the texture to define the color at each
point of the surface. The advantage of texture mapping is that it adds much detail to a scene
while requiring only a modest increase in rendering time. Texture mapping does not affect hidden
surface elimination, but merely adds a small incremental cost to the shading process. The technique
generalizes easily to curved surfaces [Catmull74].

Texture mapping can be used to define many surface parameters besides color. These include the
perturbation of surface normal vectors to simulate bumpy surfaces (bump mapping), transparency
mapping to modulate the opacity of a translucent surface, specularity mapping to vary the glossiness
of a surface, and illumination mapping to model the distribution of incoming light in all directions.
These applications are surveyed, and their original literature is cited, in [Carey-Greenberg85].

In all of the varieties of texture mapping mentioned above, geometric mappings are fundamental.
Two-dimensional mappings are used to define the parameterization of a surface and to describe the
transformation between the texture coordinate system and the screen coordinate system. In texture
mapping applications the latter mapping is usually fully determined by the 3-D transformation
defined by the camera, the modeling transformations describing the geometry of the scene, and the
parameterization that maps a texture onto a surface. There are many texture representations, but
in this work we restrict ourselves to the most common: discrete 2-D images.

When rendering a textured surface it is necessary to sample the texture image to produce
the screen image. Except for scenes viewed with parallel projections, texture mappings are non-

5
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affine, so they have nonuniform resampling grids, as shown in figure 1.1 (affine mappings are those
composed of rotations, scales, and translations). Antialiasing non-affine texture mappings requires
a space variant texture filter, however. Such filters change shape as a function of position, and are
much more difficult to implement than space invariant filters. Space variant filters are particularly
important for texture mapping applications because of the extreme range of scales involved in many
3-D scenes. (These issues are explored in detail in chapter 3.)

1.2

Image Warping

Image warping is the act of distorting a source image into a destination image according to a
mapping between source space (u, v) and destination space (x, y). The mapping is usually specified
by the functions x(u, v) and y(u, v). (We use the term "warp" instead of its synonyms "distortion"
and ��transformation" because of its conciseness and specificity: "warp" specifically suggests a
mapping of the domain of an image, while "transformation" can mean a mapping of the image
range as well).

Image warping is used in image processing primarily for the correction of geometric distortions
introduced by imperfect imaging systems [Gonzalez-Wintz87]. Camera lenses sometimes introduce.
pincushion or barrel distortions, perspective views introduce a projective distortion, and other
nonlinear optical components can create more complex distortions. In image processing, we do
image warping typically to remove the distortions from an image, while in computer graphics we
are usually introducing one. Image warps are also used for artistic purposes and special effects in
interactive paint programs. For image processing applications, the mapping may be derived given
a model of the geometric distortions of a system, but more typically the mapping is inferred from
a set of corresponding points in the source and destination images. The point correspondence can
be automatic, as for stereo matching, or manual, as in paint programs. Most geometric correction
systems support a limited set of mapping types, such as piecewise affine, bilinear, biquadratic, or
bicubic mappings. Such mappings are usually parameterized by a grid of control points. A survey
of mapping and filtering techniques for image processing is found in [Wolberg88].

The appropriate antialiasing filter for non-affine mappings in image warping is, in general, space
variant, just as for texture mapping. Filter quality and efficiency is less of a problem for image
processing, however, since the mappings used there usually have a more uniform sampling grid than
those for texture mapping. When it is known a priori that the sampling grid is nearly uniform, a
fixed "interpolation" filter can be used with good results [Gonzalez-Wintz87]. Uniform resampling
(often known as "sampling rate conversion") is a fairly common task for 1-D signals such as audio
[Crochiere-Rabiner83]. Nonuniform sampling has received much less attention to date.

1.3

Organization of this Thesis

This thesis is split into two halves: chapter 2 contains a discussion of basic 2-D mappings, and
chapter 3 develops and applies a theory for resampling filters. There are also two appendices: the
first contains source code for several mapping tasks, and the second summarizes the mathematics

6
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Figure 1.1: a) A textured surface viewed in perspective. b) Nonuniform grid of texture samples in
the screen.
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of ellipses relevant to filtering.
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Chapter 2

Two-Dimensional Mappings

In our discussion of mappings we restrict ourselves, for the most part, to 2-D images mapped
to planar surfaces. The simplest classes of 2-D mappings are the affine, bilinear, and projective
transformations. These mappings are well known in mathematics and have been used for years in
computer graphics. Despite their fundamental importance, however, the latter two mappings have
received little attention in the computer graphics literature. Other aspects of texture mapping and
image warping, such as texture synthesis and filtering, have received much more attention, probably
because they have more apparent impact on image quality than simple 2-D mappings.

We believe that texture mapping would be more common in rendering systems if basic 2-D
mappings were more widely understood. In this work we hope to revive appreciation for one class
of mappings in particular, the projective mapping.

2.1 Naive Texture Mapping

2.1.1

Coordinate Systems

To discuss texture mapping, we need to define several coordinate systems. Texture space is the
2-D space of surface textures and object space is the 3-D coordinate system in which 3-D geometry
such as polygons and patches are defined. Typically, a polygon is defined by listing the object.
space coordinates of each of its vertices. For the classic form of texture mapping with which we are
concerned, texture coordinates (u, v) are assigned to each vertex. World space is a global coordinate
system that is related to each object's local object space using 3-D modeling transformations
(translations, rotations, and scales). 3-D screen space is the 3-D coordinate system of the display,
a perspective space with pixel coordinates (x, y) and depth z (used for z-buffering). It is related to
world space by the camera parameters (position, orientation, and field of view). Finally, 2-D screen
space is the 2-D subset of 3-D screen space without z. When we use the phrase "screen space" by
itself we mean 2-D screen space.

The correspondence between 2-D texture space and 3-D object space is called the parameteri-
zation of the surface, and the mapping from 3-D object space to 2-D screen space is the projection
defined by the camera and the modeling transformations (figure 2.1). Note that when we are ren-
dering a particular view of a textured surface, it is the compound mapping from 2-D texture space

9
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2-D texture space

parameterization

compound
mapping

3-D object space

projection

2-D screen space

Figure 2.1:

The compound mapping is the composition of the surface parameterization and the
viewing projection.

to 2-D screen space that is of interest. For resampling purposes, once the 2-D to 2-D compound
mapping is known, the intermediate 3-D space can be ignored. The compound mapping in texture
mapping is an example of an image warp, the resampling of a source image to produce a destination
image according to a 2-D geometric mapping.

2.1.2

A Naive Implementation of Texture Mapping

To demonstrate the subtleties of 2-D mappings, we outline here an algorithm for texture mapping
within a z-buffer polygon renderer [Rogers 85]. This simple algorithm will produce a number of
visual flaws that are quite instructive.

We begin by defining the object space coordinates (x, y, z) and texture coordinates (u, v) at
each vertex of each polygon. The polygons are transformed to screen space, yielding x, y, and z
coordinates for each vertex. We will need to compute z, u, and v at each pixel, and we would like
to do this with fast, incremental techniques. It is well known that the perspective transformation
maps lines to lines and planes to planes [Foley-van Dam 82], so linear interpolation is appropriate
for computing z. Linear interpolation is also used in Gouraud and Phong shading, so it might seem
reasonable to interpolate the texture coordinates (u, v) linearly as well. Following this reasoning,
we scan convert the polygon into pixels by linearly interpolating r, z, u, and v along the left and
right sides of the polygon and linearly interpolating z, u, and v across each scan line. Having
texture coordinates (u, v) at each pixel, we can sample the texture array and use the resulting color
as the screen pixel value.

10


	
Page 17




The inner loop of this primitive texture mapper will then be:

for x = xleft to xright

if z < ZBUF [x,y] then
ZBUF [x,y] = Z

(r, g, b) = TEX [u,v]

SCR[x,y] = (r, g, b)

z = z+dz

(u, v) = (u, v) + (du, dv)

is new point closer?
update z-buffer

sample texture

write screen

where (a, b, c) denotes a vector. The increment values dz, du, and dv are calculated once per scan
line. This code uses the texture as the output pixel color (i.e. no lighting effects) and it point
samples the texture (i.e. no filtering).

Close examination of figure 2.2 reveals some of the flaws in the algorithm above. Aliasing
(not visible here) would result from a high frequency texture. This can be eliminated by filtering
an area surrounding the texture point (u, v) rather than sampling just a single pixel [Feibush-
Levoy-Cook80], [Heckbert86b]. More fundamentally, however, these images do not exhibit the
foreshortening we expect from perspective (compare with figure 2.3). The textured polygon also
shows disturbing discontinuities along horizontal lines passing through each vertex. These discon-
tinuities are artifacts of the linear interpolation of u and v. In animation, the horizontal ripples
will move distractingly as the camera rolls, since the ripples are rotation variant, and the lack of
foreshortening will make the texture appear to swim across a surface. As we will see, this naive
texture mapper is correct only for affine mappings.

These problems occur because the texture transformation effected by our linear interpolation of
u and v is inconsistent with the geometry transformation used to transform the vertices to screen
space. Linear interpolation of (u, v) in a scan line algorithm computes a bilinear mapping, while
the actual image warp defined by perspective is a projective mapping. One ad hoc solution to
this inconsistency is to continue with linear interpolation, but to finely subdivide the polygon. If
the texture coordinates are correctly computed for the vertices of the new polygons, the resulting
picture will exhibit less rippling. It is hard to know how finely to subdivide the polygon, however.
We can find more satisfactory, theoretically correct, solutions to these problems by studying simple,
generic 2-D mappings. Later we will apply the generic techniques to texture mapping.

2.2

Simple Two-Dimensional Mappings

There is a limitless variety of possible 2-D mappings. Mappings for applications of texture mapping
or image warping must satisfy the needs of both the user and the implementer of the system.
For a designer modeling a 3-D scene or the user of image distortion software, one of the most
important criteria for selecting a mapping is predictability. One form of predictability present in
the simplest mappings is the preservation of straight lines. If a texture mapping or image warp
bends lines then the results are less predictable than those of a line-preserving mapping. Other
desirable properties are the preservation of equispaced points, angles [Fiume-Fournier-Canale87],
and areas. The implementer of such a system seeks efficient, incremental computations and well-
behaved functions (single-valued and invertible). We will see how well the simplest 2-D mappings
meet these criteria.
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Figure 2.2: Left: A checkerboard texture. Right: Image produced by naive texture mapper using
linear interpolation of u, v. Note horizontal lines of discontinuity passing through vertices (indicated
with dashed lines).

Figure 2.3: Image produced by projective warp algorithm of ��2.3.5 using rational linear interpolation
of texture coordinates. Note proper foreshortening.
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A two-dimensional mapping is a mapping (transformation) that distorts a 2-D source space into
a 2-D destination space. It maps a source point (u, v) to a destination point (x, y), according to
the functions x(u,v) and y(u,v). We will discuss three classes of mappings: affine, bilinear, and
projective.

Homogeneous Notation

The homogeneous representation for points provides a consistent notation for affine and projective
mappings. Homogeneous notation was used in projective geometry [Maxwell46], [Coxeter78] long
before its introduction to computer graphics [Roberts66]. The homogeneous notation is often
misunderstood so we will take a moment to clarify its use and properties.

In familiar Euclidean geometry we represent points of the real plane R² by vectors of the form
(x, y). Projective geometry deals with the projective plane, a superset of the real plane, whose ho-
mogeneous coordinates are (x', y', w). In projective geometry the 2-D real point (x, y) is represented
by the homogeneous vector p = (x', y', w) = (xw, yw, w), where w is an arbitrary nonzero number.
Vectors of the form (xw, yw, w) for w 0 form the equivalence class of homogeneous representations
for the real point (x, y). To recover the actual coordinates from a homogeneous vector, we simply
divide by the homogeneous component; e.g., the homogeneous vector p = (xw, yw, w) = (x', y', w)
represents the actual point (x, y) = (x'/w, y'/w). This division, a projection onto the w= 1 plane,
cancels the effect of scalar multiplication by w. When representing real points with homogeneous
notation we could use any nonzero w, but it is usually most convenient to choose w = 1 so that
the real coordinates can be recovered without division. Projective space also includes the points at
infinity: vectors of the form (x', y', 0), excluding (0,0,0). The points at infinity lie on the line at
infinity. We will see later how augmentation of the real plane by these points simplifies projective
geometry.

-

In homogeneous notation, 2-D points are represented by 3-vectors and 3-D points are represented
by 4-vectors. For affine and projective mappings, we denote points in source space by ps (u', v', q)
and points in the destination space by pd = (x', y', w).

2.2.1

Affine Mappings

Affine mappings include scales, rotations, translations, and shears; they are linear mappings plus a
translation [Foley-van Dam82]. Formally, a mapping T(x) is linear iff T(x + y) = T(x) + T(y) and
T(ax) aT(x) for any scalar a, and a mapping T(x) is affine iff there exists a constant c and a
linear mapping L(x) such that T(x) = L(x) + c for all x. Obviously, linear mappings are a subset
of affine mappings.

A general 2-D affine mapping may be written algebraically as:

Pd = PsMsd

a

d 0

(x y 1) = (u v 1) b e 0

c f

1

Transform matrices are denoted Mab where a is the initial coordinate system and b is the final
coordinate system. Notice that we have chosen w = q = 1 without loss of generality. The 3 x 3
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ABC

ABC

ABC

Figure 2.4: Affine warps of image at left.

matrix Msd has 6 degrees of freedom. Geometrically, the vectors (a, d) and (b, e) are basis vectors
of the destination space, and (c, f) is the origin.

As shown in figure 2.4, affine mappings preserve parallel lines and preserve equispaced points
along lines (meaning that equispaced points along a line in the source space transform to equispaced
points along a line in the destination space, although the spacing in the two coordinate systems
be different). We can invert an affine mapping to find the destination-to-source transformation
simply by inverting the mapping matrix (iff M¸d has an inverse). Similarly, affine mappings may
be composed by concatenating their matrices.

may

Since an affine mapping has 6 degrees of freedom, it may be defined geometrically by specify-
ing the source and destination coordinates of three points. The mapping and its inverse will be
nondegenerate if the three points are noncollinear in both spaces. To infer the affine transform
matrix from a three point correspondence that maps (uk, vk) to (xk, yk) for k = 0, 1, 2, we solve the
following matrix equation for Msd:

- (

Md = M&Msd

TO ����
21 Y1 1
12 Y2 1

1

�ʦ� VO 1

ալ V1 1
մշ 02 1

a d 0

��

0

c f

f 1

The above relation is 6 scalar equations in 6 unknowns a-f, but the system simplifies easily into
two 3 x 3 systems, one for r and one for y.

Affine mappings can map any triangle in source space into any triangle in destination space,
or map a source rectangle into a destination parallelogram, but no more general distortions are
possible. To warp a rectangle into a general quadrilateral, we will need a bilinear, projective, or
some other more complex mapping.

2.2.2

Bilinear Mappings

Bilinear mappings are most commonly defined as a mapping of a square into a quadrilateral. As
shown in figure 2.5, this mapping can be computed by linearly interpolating by fraction u along the
top and bottom edges of the quadrilateral, and then linearly interpolating by fraction v between

14







		Search more related documents:Untitled

		Download Document:Untitled

		



		

		

	



	
		
			
			Recent Documents:

			

			
					Problem #1: A skater goes from a standstill to a speed of 6.7 m/s in 12 seconds. What is the acceleration of the skater?
	       EXAMPLE 11.1 Dipole–Dipole Forces  (b) CH2Cl2    (1) The electronegativity of C is 2.5, that of H is 2.1, and that of Cl is 3.0. Consequently, 
	BOND Stage 1 Early Assessment Report
	Bulletin - International Council of Sport Science and Physical Education ICSSPE
	Written Testimony of Jennifer Lynch Staff Attorney with the Electronic Frontier Foundation (EFF) Senate Committee on the Judicia
	A Family Recipe Book for Kidney Patients
	Shakambaree Technologies Pvt. Ltd.
	Programmation Systèmes Cours 3 — Process Management
	A More Generalized Approach for Analyzing
	   SADC/COMI/2013/1.2C  Version 2:180913           MEETING OF THE COMMITTEE OF MINISTERS RESPONSIBLE FOR TRANSPORT AND METEOROLOGY   14 – 16 OCTOB
	DATA QUALITY AND THE BOTTOM LINE
	        BENZÍN (a jiné destilační produkty ropy)  Číslo CAS:90641-13-7  Klasifikace:Xn  R-věty.R 65  S-věty:S(2-)23-24-62   (obecn&
	MOON TOWNSHIP DEPARTMENT OF BUILDING REGULATIONS
	Holocaust Theology: A Reader
	IMAGE PREPROCESSING FOR CBIR SYSTEM
	Compounds 1030, 1031,
	Interaction of II' Ions with Acid Groups in Aconitine-modified Sodium Channels
	2023 Instructions for Schedule I (Form 1120-F)
	Intermediate/Advanced Excel Intermediate/Advanced Excel, and VBA, for Real Estate Finance
	MULTIRESOLUTION SCHEMES FOR STRONGLY DEGENERATE PARABOLIC EQUATIONS 1. Introduction 1.1. Scope of the paper. High resolution fin
	        CUSTOMER SATISFACTION                  CUSTOMER SATISFACTION    The most  important asset of any organization is its customers  Satisfied  cus








	

	
		
		
			Recent Search:

		

		
				Fluoroquinolones
	Chinfloxacin
	in vitro antibacterial activity
	in vivo antibacterial activity
	topoisomeraseⅣ
	PK PD
	Feminist Consciousness
	Self identity
	Narrative Art
	Miss Sophie’s Diary
	Mrs Dalloway
	Real Estate
	Customers’ satisfaction
	Test indicator system
	Middle level cadres
	Performance Evaluation
	Staff evaluation
	Civil aviation system
	Pre school migrant child
	Child Development
	Case study











		
		

		












Set Home | Add to Favorites
 
All Rights Reserved Powered by Free Document Search and Download

Copyright © 2011
This site does not host pdf,doc,ppt,xls,rtf,txt files all document are the property of their respective owners. complaint#nuokui.com






